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Abstract

The Central Limit Theorem is an outstanding discovery of mathematics.
It is not only a theoretical construct from probability theory, but simplifies
also many calculations in everyday work.

This thesis treats a proof of the de Moivre-Laplace theorem which is a
special case of the (classical) Central Limit Theorem for sums of Bernoulli
distributed random variables. The proof was created by Nicolai V. Krylov
(University of Minnesota) and shall, according to the title of the correspond-
ing paper, serve as a lecture for undergraduate students.

In this proof Krylov makes no use of constructs from measure theory,
but uses only contents from a typical lecture about calculus. Krylov knows
how to use these simple concepts, such that the proof’s complexity does not
grow too much. It is this aspect that makes the proof so impressive and
exciting.

Zusammenfassung

Der Zentrale Grenzwertsatz ist eine herausragende Entdeckung der Ma-
thematik. Er stellt nicht nur ein theoretisches Konstrukt der Wahrscheinlich-
keitstheorie dar, sondern vereinfacht auch viele Rechnungen in der Praxis.

Diese Arbeit behandelt einen Beweis des Satzes von de Moivre-Laplace,
welcher ein Spezialfall des (klassischen) Zentralen Grenzwertsatzes für die
Summe Bernoulli-verteilter Zufallsgrößen darstellt. Der Beweis wurde von
Nicolai V. Krylov (Universität Minnesota) geführt und soll laut dem Titel
der zugehörigen Schrift einer Vorlesung für Bachelor-Studenten dienen.

Krylov benutzt in diesem Beweis keinerlei Konstrukte aus der Maß-
theorie, sondern verwendet lediglich Inhalte aus einer typischen Analysis-
Vorlesung. Krylov versteht es, diese einfachen Konzepte so zu verwenden,
dass die Komplexität des Beweises im Rahmen bleibt. Genau dieser Aspekt
macht den Beweis so eindrucksvoll und spannend.



”The scientist finds his reward in what Henri
Poincaré calls the joy of comprehension, and not
in the possibilities of application to which any
discovery of his may lead.”

”Der Wissenschaftler findet seine Belohnung
in dem, was Poincaré die Freude am Verstehen
nennt, nicht in den Anwendungsmöglichkeiten
seiner Erfindung.”

- Albert Einstein
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Chapter 1

Introduction

In this introductory chapter, we will get to know the basics for understanding the

proof of the de Moivre-Laplace Theorem as a special case of the Central Limit

Theorem for sums of Bernoulli distributed random variables. Without discussing

some important facts, it would be quite difficult to understand the statement of

the theorem and the proof even more.

1.1 Binomial Distribution

Before we start with the binomial distribution, let us first consider a simpler dis-

tribution called Bernoulli distribution Ber(p) with parameter p ∈ (0, 1). This

distribution gives the value 1 for success with probability p and value 0 for failure

with probability q = 1− p. In the following sections, we will use X as a Bernoulli

distributed random variable→ X ∼ Ber(p). The expected value and the variance

are easily computed to

E(X) = 1 · p+ 0 · q = p,

V ar(X) = E(X2)− E(X)2 =
(
12 · p+ 02 · q

)
− p2 = p(1− p).

In this thesis, we will only consider cases with p = q = 1
2

without loss of generality.

Thus, it is

E(X) =
1

2

1



1.1. Binomial Distribution

and

V ar(X) =
1

2

(
1− 1

2

)
=

1

4
.

Now, let us look at the binomial distribution B(n, p) with parameters n ∈ N and

p = 1
2
.
(
We will use Sn as a special name for binomially distributed random vari-

ables → Sn ∼ B
(
n, 1

2

))
.

As in the case of the Bernoulli distribution, it is a discrete probability distri-

bution. The binomial distribution looks at the number of successes (or failures) of

n independent Bernoulli trials with the same success probability p which we set

to 1
2

again.

It has thus the following probability mass function (for k successes with k =

0, 1, . . . , n) which is illustrated in Figure 1.1:

P (Sn = k) =

(
n

k

)
pk(1− p)n−k

=

(
n

k

)(
1

2

)k (
1− 1

2

)n−k
=

(
n

k

)
1

2n

=
1

2n
· n!

k!(n− k)!
(1.1)

2



CHAPTER 1. INTRODUCTION

0 5 10 15

0.05

0.10

0.15

0.20
n=16

Figure 1.1: Probability mass function of binomial distribution with p = 1
2

For the calculation of the expected value and the variance, it is useful to regard

the binomial distribution Sn as a sum of independent Bernoulli trials Xi. The

following calculation, adjusted from [Irl05, p.59], shows exactly this fact:

P (Sn = k) = P

(
n∑
i=1

Xi = k

)
=

∑
(X1,...,Xn):

∑n
i=1Xi=k

pk(1− p)n−k

=

(
n

k

)
pk(1− p)n−k

= B(n, p)(k) (1.2)

It is easy to see that the Bernoulli distribution is a special case of the binomial

distribution with n = 1.

Using the fact from Equation (1.2), we can now easily compute the expected value

3



1.2. Normal Distribution

and the variance of Sn with the ones from the Bernoulli distribution:

E (Sn) = E

(
n∑
i=1

Xi

)
=

n∑
i=1

E (Xi) = np =
n

2

V ar (Sn) = V ar

(
n∑
i=1

Xi

)
=

n∑
i=1

V ar (Xi) = np(1− p) =
n

4

Changing the order of summation and the functions for the expected value and

the variance is allowed due to the independency of the random variables Xi.

1.2 Normal Distribution

The other distribution we will need, is the normal distribution N(µ, σ2). It is a

continuous probability distribution and one of the most important distributions

in applied statistics. The parameter µ denotes the expected value and σ2 denotes

the variance. Its density function has the form

f(x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

.

The distribution N(0, 1) is called standard normal distribution and has thus the

density function

φ(x) =
1√
2π
e−

1
2
x2 .

In Figure 1.2, you can see the density function of different normal distributions

including the standard normal distribution.

4
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0.1
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μ=1,σ 2=1.5

μ=2,σ 2=2

Figure 1.2: Probability density function of some normal distributions

It is nice to know that every normal distribution is a special version of the standard

normal distribution. So,

f(x) =
1

σ
φ

(
x− µ
σ

)
is a density function of some normal distribution N(µ, σ2). The domain of the

standard normal distribution was only stretched by the factor σ and translated by

µ.

The cumulative distribution function (CDF) of the general normal distribution

is

F (x) =
1

σ
√

2π

∫ x

−∞
e−

1
2( t−µσ )

2

dt.

If we substitute with z = t−µ
σ

, the general CDF F (x) can be represented in terms

of the CDF of the standard normal distribution. That is,

F (x) =
1

σ
√

2π

∫ x−µ
σ

−∞
e−

1
2
z2dz = Φ

(
x− µ
σ

)
with

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2
t2dt.

Figure 1.3 shows the cumulative distribution functions of the corresponding density

functions from Figure 1.2.
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1.3. De Moivre-Laplace Theorem

- 4 - 2 2 4 6 8

0.2

0.4
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1.0

μ=0,σ 2=1

μ=1,σ 2=1.5

μ=2,σ 2=2

Figure 1.3: Cumulative distribution function of normal distributions from Fig-

ure 1.2

1.3 De Moivre-Laplace Theorem

The de Moivre-Laplace Theorem states that sums of Bernoulli distributed random

variables, which can be treated as binomially distributed as we saw before, converge

to the normal distribution for n → ∞ and probabilities 0 < p < 1. Figure 1.4

illustrates this fact. It shows two binomial distributions for n = 4 and n = 16 with

p = 1
2

and the
”
according“ normal distributions with the same expected value and

the same variance.

0 1 2 3 4

0.1

0.2

0.3

0.4
n=4

0 5 10 15

0.05

0.10

0.15

0.20
n=16

Figure 1.4: Two binomial distributions (p = 1
2
) with their

”
according“ normal

distribution

This theorem is a special case of the classical Central Limit Theorem which says

that under certain conditions the sum of random variables of every distribution

6



CHAPTER 1. INTRODUCTION

converges to the normal distribution. This is the reason why the normal distribu-

tion is so important.

The mathematical description of the de Moivre-Laplace Theorem is the follow-

ing.

Theorem (de Moivre-Laplace Theorem). Let Sn be a binomially distributed ran-

dom variable with parameters n and 0 < p < 1 and let Z be a normal distributed

random variable with parameters µ = np and σ2 = np(1− p). Then, it holds

lim
n→∞

P (Sn < t) = F (t)

where F (t) is the cumulative distribution function of Z.

An alternative way of defining this theorem is to consider normalized random

variables which leads to

Theorem (de Moivre-Laplace Theorem with normalized random variables). Let

Sn be a binomially distributed random variable with parameters n and 0 < p < 1.

Then, it holds

lim
n→∞

P

(
Sn − np√
np(1− p)

< z

)
= Φ(z)

where Φ(z) is the cumulative distribution function of the standard normal distri-

bution.

Both versions of the theorem have the same statement, namely that the difference

(or error) between the cumulative values of the binomial distribution and the ones

of the normal distribution gets smaller for increasing n and finally converges to

zero. The question how it converges to zero is the topic of the next section.

1.4 Error Analysis

In this section, we try to find out how the error between the normal distribution

and the binomial distribution behaves with increasing n.

7



1.4. Error Analysis

We calculate the error in the following way. For fixed n and p, let us compute

the expected value µ and the variance σ2 of a binomially distributed random vari-

able Sn ∼ B(n, p) (see Section 1.1). Then we can set up the
”
according“ normal

distributed random variable Z ∼ N(µ, σ2). After that we look at the values of Sn

at the points k = 0, 1, . . . , n and subtract them from the values of Z at the same

points to get the error. The euclidean norm of the resulting error vector is the

value we look at for increasing n. The mathematical way describing the euclidean

norm of the resulting error vector is√√√√ n∑
k=0

[Z(k)− Sn(k)]2.

In Figure 1.5, we can see the error sums for p = 1
2

and n = 4, 6, 8, . . . , 50.

4 10 20 30 40 50
n0.000

0.005

0.010

0.015

0.020

0.025

0.030
Error

Figure 1.5: Error sums for p = 1
2

The error decreases exponentially and converges to zero with increasing n. Hope-

fully we can verify this result in Section 2 which deals with the proof. But before

we start, let us take a look at some outstanding historical facts.

8



CHAPTER 1. INTRODUCTION

1.5 Some History

The first approach to approximate the binomial with the normal distribution was

made by Abraham de Moivre (1667-1754). In 1738, he published the second edi-

tion of his book The Doctrine of Chances which contained the theorem for the

first time.

De Moivre looked at
”
the number of heads coming from many tosses of a fair

coin“ [Tij04, p.169]. The probability of tossing a head is Bernoulli distributed

which says that the number of heads, as the sum of n independent Bernoulli trials,

is distributed binomially as we saw from Equation (1.2). De Moivre also gave a

first suggestion for the
”
normal curve“. He tried to find an approximation for the

binomial coefficient and proved that

∑
|x−n2 |≤d

(
n

x

)(
1

2

)n
≈ 4√

2π

∫ d√
n

0

e−2y2dy.

But to get a proper probability distribution, it was necessary to norm the integral∫∞
−∞ e

1
2

2

dx. It was Pierre-Simon Laplace (1749-1827) who did the computation.

His result was ∫ ∞
−∞

e−
1
2
t2dt =

√
2π.

Two different ways of computing this integral can be seen in Appendix A.1.

In 1809, Carl Friedrich Gauß (1777-1855) defined the well-known normal distribu-

tion in his book Theoria motus corporum coelestium in sectionibus conicis solem

ambientium (engl.: Theory of motion of the celestial bodies moving in conic sec-

tions around the sun) as we know it today to

f(x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

.

We can see Gauß in Figure 1.6, which shows him and the normal curve on the

front of an old German bank note.

9



1.5. Some History

Figure 1.6: Bank note of 10 Deutsche Mark with Carl Friedrich Gauß and the

normal curve on its front

Finally, it was again Laplace, who proved the Central Limit Theorem in 1810 and

hence completed de Moivre’s work on the theorem for binomial distributions.

10



Chapter 2

Proof by Krylov

For the proof, Krylov uses only some aspects from undergraduate calculus and

thus avoids concepts from measure theory which would make the proof even more

complex. There is also another method to prove the de Moivre-Laplace Theorem

using Stirling’s formula which gives an approximation for large factorials:

n! ∼
√

2πnnne−n

The proof using this formula can be seen in [Irl05, p.64-66].

2.1 Motivation

In this section, we give a short setup for the following section and try to motivate

the exact proof. Thus, here we will show in an intuitive way that the de Moivre-

Laplace Theorem holds for distributions with probability p = 1
2
.

First, let us introduce some variables for latter calculations. We will center the

random variable Sn and make its variance constant. The new random variable is

called Zn and defined as

Zn :=
Sn − n

2√
n

.

11



2.1. Motivation

With some simple steps, we can see that Zn is indeed centered and has constant

variance (which means that it does not depend on n):

E(Zn) = E

(
Sn − n

2√
n

)
=

1√
n
E
(
Sn −

n

2

)
=

1√
n

(
E (Sn)− E

(n
2

))
=

1√
n

(n
2
− n

2

)
= 0

V ar(Zn) = V ar

(
Sn − n

2√
n

)
=

1

n
V ar(Sn)

=
1

n
· n

4
=

1

4

We may hope that the distributions of Zn converge to something as n→∞. This

means that for a < b

P

(
a <

Sn − n
2√

n
≤ b

)
(2.1)

has a limit as n→∞. In order to express the probability above, it is necessary to

transform the variable k like it was done with the random variable Sn. It is

ykn :=
k − n

2√
n
, k = 0, 1, . . . , n.

Informally saying, ykn is the ”centered variable k with constant variance”. It has

proven useful to know what yk+1,n means. So,

yk+1,n =
k + 1− n

2√
n

=
k − n

2√
n

+
1√
n

= ykn +
1√
n
. (2.2)

This says that the distance between ykn and yk+1,n is 1√
n

which converges to 0 as

n→∞.

12



CHAPTER 2. PROOF BY KRYLOV

By the way, this is the reason why the variance was made constant. Without

constant variance, the ykn’s would spread way to far. This fact is illustrated in

Figure 2.1. Red points display ykn’s with non-constant variance (depending on n),

blue points show ykn’s having constant variance.

- 1- 2- 3- 4- 5 1 2 3 4 50

n=10

Figure 2.1: ykn’s with constant and non-constant variance

At this point, we can notice an important property of the k-ykn-transformation:

k =
n

2
⇔ ykn = 0 (2.3)

This means that n
2

is the center for the k’s and 0 is the center for the ykn’s.

We also will need the reverse transformation from ykn to k:

ykn =
k − n

2√
n

⇔
√
n ykn = k − n

2

⇔ k =
√
n ykn +

n

2
(2.4)

The probability P (Sn = k) now arises to

P (Sn = k) = P

(
Sn − n

2√
n

= ykn

)
.

This probability is the definition for fn which is a function of ykn. Hence, it is

fn(ykn) := P

(
Sn − n

2√
n

= ykn

)
= P (Sn = k). (2.5)

Now, the key idea is to put fn(ykn) and fn(yk+1,n) in relation (or similar P (Sn = k)

and P (Sn = k + 1)). As we can guess, our goal is indeed to derive a recurrence

relation. For k ≤ n − 1, a simple algebraic manipulation of Equation (1.1) leads

13



2.1. Motivation

to

P (Sn = k) =
1

2n
· n!

k!(n− k)!

=
1

2n
· n!

(k + 1)!(n− (k + 1))!
· k + 1

n− k
(2.6)

= P (Sn = k + 1)
k + 1

n− k
.

So, here we have the relation between the probability for k and k + 1 successes.

If we substitute Equations (1.1), (2.4) and (2.5) in the equation above, we get

fn(ykn) = fn(yk+1,n)

√
n ykn + n

2
+ 1

n−
√
n ykn − n

2

⇔ fn(ykn) = fn

(
ykn +

1√
n

) √
n ykn + n

2
+ 1

n
2
−
√
n ykn

⇔ fn

(
ykn +

1√
n

)
= fn(ykn)

n
2
−
√
n ykn√

n ykn + n
2

+ 1
. (2.7)

Subtracting fn(ykn) from both sides leads to

fn

(
ykn +

1√
n

)
− fn(ykn) = fn(ykn)

( n
2
−
√
n ykn√

n ykn + n
2

+ 1
− 1

)
= fn(ykn)

n
2
−
√
n ykn − (

√
n ykn + n

2
+ 1)

√
n ykn + n

2
+ 1

= fn(ykn)
−2
√
n ykn − 1√

n ykn + n
2

+ 1

= −fn(ykn)
2
√
n ykn + 1√

n ykn + n
2

+ 1
. (2.8)

Here, we can see the aspect of the recurrence relation. The natural conclusion is

to make this relation to an ordinary differential equation (ODE). For this, let us

believe that for a function φ holds

φn(ykn) := a−1
n fn(ykn)→ φ(y)

as n → ∞ and ykn → y. The sequence an stands for the order of fn’s terms

14



CHAPTER 2. PROOF BY KRYLOV

and has to be determined. To find this order, let us regard the probability in

Equation (2.1) which is

P

(
a <

Sn − n
2√

n
≤ b

)
=

∑
k:a<

k−n2√
n
≤b

P (Sn = k)

=
∑

k:a<ykn≤b

fn(ykn).

The sum above has about (b− a)
√
n terms. To see this, let us concentrate on the

summation variable k and its condition a < ykn ≤ b and do some simple algebraic

steps:

a < ykn ≤ b

a <
k − n

2√
n
≤ b

a
√
n < k − n

2
≤ b
√
n

a
√
n+

n

2
< k ≤ b

√
n+

n

2

Thus, the difference of k’s boundaries is

b
√
n+

n

2
−
(
a
√
n+

n

2

)
= b
√
n− a

√
n

= (b− a)
√
n.

This means that every term of fn should be of order 1√
n
, which furthermore says

that a−1
n =

√
n.

For φn, Equation (2.8) becomes

φn

(
ykn +

1√
n

)
− φn(ykn) = −φn(ykn)

2
√
n ykn + 1√

n ykn + n
2

+ 1
. (2.9)

Now, let us pretend that Equation (2.9) holds for φ rather than for φn and for all

15



2.1. Motivation

y in place of ykn. That leads to

φ

(
y +

1√
n

)
− φ(y) = −φ(y)

2y
√
n+ 1

y
√
n+ n

2
+ 1

. (2.10)

Here, the ODE aspect comes in. If we divide the equation by 1√
n

and let n→∞,

we get an ODE whose solution is φ(y) to which φn(y) should be close. In order to

specify the ODE, we first have to determine the limit of the fraction:

lim
n→∞

2y
√
n+ 1

y
√
n+ n

2
+ 1
· 1

1√
n

= lim
n→∞

2y n+
√
n

y
√
n+ n

2
+ 1

= 4y. (2.11)

Thus, the ODE looks like

φ′(y) = −4y φ(y). (2.12)

To get the solution of this ODE, we can use the method of integrating factors. We

use the integrating factor ψ(y) and multiply it by the equation:

ψ(y) · φ′(y) + ψ(y) · 4y φ(y) = 0 (2.13)

If we assume that ψ(y) 4y = ψ′(y), the equation can be simplified with some

manipulations:

ψ(y) · φ′(y) + ψ′(y) · φ(y) = 0

⇔ (ψ(y) · φ(y))′ = 0

⇔
∫

(ψ(y) · φ(y))′ dy =

∫
0 dy

⇔ ψ(y) · φ(y) = c

⇔ φ(y) = c · ψ(y)−1

As mentioned above, the integrating factor ψ(y) satisfies the equation

ψ(y) 4y = ψ′(y)⇔ ψ′(y)

ψ(y)
= 4y. (2.14)
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If we notice that ψ′(y)
ψ(y)

= ln(ψ(y))′, the integrating factor can be easily computed:

ψ′(y)

ψ(y)
= 4y

⇔ ln(ψ(y))′ = 4y

⇔
∫

ln(ψ(y))′ dy =

∫
4y dy

⇔ lnψ(y) = 2y2 + c

⇔ ψ(y) = c e2y2

It follows that

φ(y) = c e−2y2 .

And here, we have derived the aspect of the normal distribution for this special

instance of the Central Limit Theorem.

Now, you may wonder why the coefficient of the exponent is −2 and thus dif-

ferent from the one in the Gaussian function which is −1
2
. That is, because we

did not use the correct standard deviation for normalizing the random variable

Sn. We used
√
n instead of

√
n

2
. You can find the previous calculation with the

correctly normalized random variable in Appendix A.2 to see that then the correct

coefficient arises.

2.2 Krylov’s
”
First Rigorous Result“

First, it is useful to notice a fact coming from the result of the motivation chapter.

The result stated that

φ(y) = c e−2y2 .

But what is the value of c? To get this value, it is necessary that e−2y2 becomes

one. This is true for y = 0. Thus, c = φ(0) which leads to the equation

φ(y) = φ(0) e−2y2 . (2.15)
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2.2.1 Part 1

In the first part of the proof, our (and Krylov’s) goal is to show that Equation (2.15)

is also true for our discrete case as n→∞. Expressed in a mathematical way, this

means we have to prove that

φn(0)−1 e2y2kn φn(ykn) = eO(z(n)) = 1 +O (z(n)) (2.16)

where z(n)→ 0 as n→∞.

Let us look at Krylov’s version of the statement. He wants to show that

c−1
n e2y2kn fn(ykn) = eO(z(n)) = 1 +O (z(n))

holds for even n where cn = P (Sn = n
2
) and z(n) = n4β−3 for β ∈

[
1
2
, 3

4

]
.

Apart from his choice of z(n), he makes the same statement as we do, what does

not seem so at first glance. cn can be written as fn(0) as we know from Equa-

tion (2.3) and φn(ykn) =
√
n fn(ykn) as we found out in the motivation chapter.

Our choice of z(n) will be developed during the proof.

Now, let us begin with the proof of the first part. Krylov decides to consider

all k’s such that
∣∣k − n

2

∣∣ ≤ nβ for some β and so do we. In terms of ykn, this is∣∣∣∣k − n
2√
n

∣∣∣∣ ≤ nβ−
1
2 ⇔ |ykn| ≤ nβ−

1
2 .

The values of nβ and nβ−
1
2 have to go to∞ as n→∞ because we want to capture

the whole real axis. Thus, a first useful condition for β is β > 1
2
.

18
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Let us do some manipulations of Equation (2.16) which will simplify the proof:

φn(0)−1 e2y2kn φn(ykn) = eO(z(n))

⇔ lnφn(0)−1 + 2y2
kn + lnφn(ykn) = O (z(n))

⇔ ln
1√

n fn(0)
+ 2y2

kn + ln(
√
n fn(ykn)) = O (z(n))

⇔ − ln
√
n− ln fn(0) + 2y2

kn + ln
√
n+ ln fn(ykn) = O (z(n))

⇔ ln fn(ykn)︸ ︷︷ ︸
gn(ykn)

− ln fn(0)︸ ︷︷ ︸
gn(0)

= −2y2
kn +O (z(n)) (2.17)

This is the equation which we finally want to prove. The important part of this

equation is the left hand side gn(ykn) − gn(0). Because we know that fn has to

converge to e−2y2kn as n → ∞, we also know that gn has to converge to −2y2
kn

which is a parabola (see Figure 2.2).

f

g

Figure 2.2: fn and gn

Figure 2.3 illustrates how the left hand side is computed.
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n=32

Figure 2.3: Splitted differences of gn

The difference is splitted into several easier ones by the following steps:

gn(yk+1,n)− gn(0) =
[
gn(yn

2
+1,n)− gn(

0︷︸︸︷
yn

2
,n)
]

+
[
gn(yn

2
+2,n)− gn(yn

2
+1,n)

]
+

. . .+ [gn(ykn)− gn(yk−1,n)] + [gn(yk+1,n)− gn(ykn)]

=
k∑

i=n
2

[gn(yi+1,n)− gn(yin)] (2.18)

Thus, it is important to know the value of gn(yk+1,n) − gn(ykn). If we recognize

that Equation (2.7) is exactly what we need, we can transform it to

fn(yk+1,n)

fn(ykn)
=

n
2
−
√
n ykn√

n ykn + n
2

+ 1
.
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After some algebraic steps, we arrive at a first result:

ln
fn(yk+1,n)

fn(ykn)
= ln

n
2
−
√
n ykn√

n ykn + n
2

+ 1

⇔ ln fn(yk+1,n)− ln fn(ykn) = ln
(n

2
−
√
n ykn

)
− ln

(√
n ykn +

n

2
+ 1
)

⇔ gn(yk+1,n)− gn(ykn) = ln

(
n

2
−
√
n
k − n

2√
n

)
− ln

(√
n
k − n

2√
n

+
n

2
+ 1

)
= ln(n− k)− ln(k + 1) (2.19)

At this step, Krylov has a perfect idea and introduces a new variable transforma-

tion for further calculations. The transformation is

xkn =
2ykn√
n

=
2
(
k − n

2

)
n

=
2k

n
− 1.

The reverse transformation from xkn to k is thus

xkn =
2k

n
− 1

⇔ nxkn = 2k

⇔ k =
n

2
xkn +

n

2
. (2.20)

Also here, it is useful to know what xk+1,n means:

xk+1,n =
2(k + 1)

n
− 1 =

2k + 2

n
− 1 =

2k

n
− 1 +

2

n
= xkn +

2

n

This means that the distance between xkn and xk+1,n is 2
n

which converges to 0 as

n→∞.
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Finally with Equation (2.20), Equation (2.19) gives

gn(yk+1,n)− gn(ykn) = ln
(
n− n

2
xkn −

n

2

)
− ln

(n
2
xkn +

n

2
+ 1
)

= ln
(n

2
(1− xkn)

)
− ln

(
n

2

(
1 + xkn +

2

n

))
= ln(1− xkn)− ln

(
1 + xkn +

2

n

)
= ln(1− xkn)− ln (1 + xk+1,n) .

We continue like Krylov and develop the equation above into a Taylor series until

order 3:

gn(yk+1,n)− gn(ykn) = ln(1− xkn)− ln (1 + xk+1,n)

= − (xk+1,n + xkn) +
1

2

(
x2
k+1,n − x2

kn

)
− 1

3

(
x̄3
k+1,n + x̄3

kn

)
where x̄kn ≤ xkn and x̄k+1,n ≤ xk+1,n.

We will put this result in Equation (2.18) and get

k∑
i=n

2

[gn(yi+1,n)− gn(yin)] =
k∑

i=n
2

[
− xin − xi+1,n +

1

2

(
x2
i+1,n − x2

in

)
−

. . .− 1

3

(
x̄3
in + x̄3

i+1,n

) ]
= −

k∑
i=n

2

(xin + xi+1,n) +
1

2

k∑
i=n

2

(
x2
i+1,n − x2

in

)
−

. . .− 1

3

k∑
i=n

2

(
x̄3
in + x̄3

i+1,n

)
. (2.21)

We will compute every single sum step by step. Beforehand we will clarify some

basics for these computations. First, it is sufficient to concentrate on k ≥ n
2

(or
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similarly ykn ≥ 0) due to symmetry reasons. It follows that for n
2
≤ k ≤ n

2
+ nβ:

n

2
≤ k ≤ n

2
+ nβ

0 ≤ k − n

2
≤ nβ

0 ≤
k − n

2√
n
≤ nβ−

1
2

0 ≤ ykn ≤ nβ−
1
2

Additionally, if we use the transformation Equation (2.20), we get the order of xkn:

0 ≤
√
nxkn
2

≤ nβ−
1
2

0 ≤
√
nxkn ≤ 2nβ−

1
2

0 ≤ xkn ≤ 2nβ−1

⇒ xkn = O
(
nβ−1

)
Using this result, we can also find the order of x̄3

kn + x̄3
k+1,n:

x̄3
kn + x̄3

k+1,n ≤ x3
kn + x3

k+1,n = O
(
nβ−1

)3
+O

(
nβ−1

)3

= O
(
n3β−3

)
We will also need two elementary sums for the computations. These are

k∑
i=n

2

1 = 1 + 1 + . . .+ 1︸ ︷︷ ︸
k+1−n

2

= k + 1− n

2
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and

k∑
i=n

2

i =
n

2
+
(n

2
+ 1
)

+
(n

2
+ 2
)

+ . . .+ k

=
n

2

(
1 + 1 + . . .+ 1︸ ︷︷ ︸

k+1−n
2

)
+
(

1 + 2 + . . .+
(
k − n

2

))

=
n

2

(
k + 1− n

2

)
+

k−n
2∑

i=1

i

=
n
(
k + 1− n

2

)
2

+

(
k − n

2

) (
k + 1− n

2

)
2

=
1

2

(
k + 1− n

2

)(
n+ k − n

2

)
=

1

2

(
k + 1− n

2

)(
k +

n

2

)
.

With these basics, we now can compute the three sums from Equation (2.21). The

first one is calculated by

k∑
i=n

2

(xi+1,n + xin) =
k∑

i=n
2

(
2i+ 2

n
− 1 +

2i

n
− 1

)
=

k∑
i=n

2

(
4i+ 2

n
− 2

)

=
k∑

i=n
2

(
4

n

(
i− n

2

)
+

2

n

)
=

4

n

k∑
i=n

2

(
i− n

2

)
+

2

n

k∑
i=n

2

1

=
4

n

k−n
2∑

i=1

i+
2

n

k∑
i=n

2

1

=
4

n
·
(
k + 1− n

2

) (
k − n

2

)
2

+
2

n

(
k + 1− n

2

)
=

2

n

(
k + 1− n

2

)(
k − n

2

)
+

2

n

(
k + 1− n

2

)
=

2

n

(
k + 1− n

2

)(
1 + k − n

2

)
=

2

n

(
k + 1− n

2

)2

= 2

((
k + 1− n

2

)2

√
n

2

)
= 2

(
k + 1− n

2√
n

)2

= 2y2
k+1,n.
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The computation for the second sum is

k∑
i=n

2

(
x2
i+1,n − x2

in

)
=

k∑
i=n

2

[(
2i+ 2

n
− 1

)2

−
(

2i

n
− 1

)2
]

=
k∑

i=n
2

[(
4i2 + 8i+ 4

n2
− 4i+ 4

n
+ 1

)
−
(

4i2

n2
− 4i

n
+ 1

)]

=
k∑

i=n
2

(
8i+ 4

n2
− 4

n

)

=
1

n2

8
k∑

i=n
2

i+ 4
k∑

i=n
2

1

− 4

n

(
k + 1− n

2

)
=

1

n2

[
8

(
1

2

(
k + 1− n

2

)(
k +

n

2

))
+ 4

(
k + 1− n

2

)]
− 4

n

(
k + 1− n

2

)
=

1

n2

[
4
(
k + 1− n

2

)(
k +

n

2

)
+ 4

(
k + 1− n

2

)]
− 4

n

(
k + 1− n

2

)
=

1

n2

[
4

(
k2 +

kn

2
+ k +

n

2
− kn

2
− n2

4

)
+ 4

(
k + 1− n

2

)]
. . .− 1

n
(4k + 4− 2n)

=
1

n2

[
4k2 + 8k + 4

]
− 1− 1

n
(4k + 4) + 2

=
(2k + 2)2

n2
− 2 · 2k + 2

n
+ 1

=

(
2 (k + 1)

n
− 1

)2

= x2
k+1,n = O

(
n2β−2

)
.
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Finally, we get

gn(yk+1,n)− gn(0) =
k∑

i=n
2

[gn(yi+1,n)− gn(yin)]

= −
k∑

i=n
2

(xi+1,n + xin) +
1

2

k∑
i=n

2

(
x2
i+1,n − x2

in

)
. . .− 1

3

k∑
i=n

2

(
x̄3
i+1,n + x̄3

in

)
= −2y2

k+1,n +O
(
n2β−2

)
+O

(
n3β−3

)
= −2y2

k+1,n +O
(
n2β−2

)
.

Regarding the penultimate step, the question was, which of the two orders is

greater. Let us try to find out for which values of β, O
(
n2β−2

)
is greater or equal

than O
(
n3β−3

)
:

3β − 3 ≤ 2β − 2

3β ≤ 2β + 1

β ≤ 1

Hence, we have a new interval for β ⇒ β ∈
(

1
2
, 1
]
. This says that O

(
n2β−2

)
is, for

the given interval of β, greater than O
(
n3β−3

)
.

Thus, we have proved Equation (2.17) with z(n) = n2β−2. Equation (2.16) can be

updated to

φn(0)−1 e2y2kn φn(ykn) = eO(n2β−2) = 1 +O
(
n2β−2

)
(2.22)

or similarly

fn(0)−1 e2y2kn fn(ykn) = eO(n2β−2) = 1 +O
(
n2β−2

)
.

The equality of eO(n2β−2) and 1 +O
(
n2β−2

)
can be proved by developing eO(n2β−2)
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into a Taylor series:

eO(n2β−2) = 1 +O
(
n2β−2

)
+

1

2
O
(
n2β−2

)2
+

1

6
O
(
n2β−2

)3
+O

(
O
(
n2β−2

)4
)

= 1 +O
(
n2β−2

)
+O

(
n4β−4

)
+O

(
n6β−6

)
+O

(
n8β−8

)
= 1 +O

(
n2β−2

)
.

Regarding the penultimate step again, we had to decide which of the orders is the

greatest. Using the method from above, we can see that n2β−2 has the greatest

order.

So finally we proved that for β ∈
(

1
2
, 1
]

fn(0)−1 e2y2kn fn(ykn) = 1 +O
(
n2β−2

)
. (2.23)

2.2.2 Part 2

As a second part, Krylov focuses on determining the behavior of fn(0) as n→∞.

First, let us say again that

cn = fn(0) = P
(
Sn =

n

2

)
.

Now, let us rewrite Equation (2.23). Multiplying by 1√
n

and e−2y2kn gives

1

cn
√
n
fn(ykn)︸ ︷︷ ︸
P (Sn=k)

=
1√
n
e−2y2kn +O

(
n2β−2.5

)
. (2.24)

In the next step, Krylov not only regards one probability but a sum of those. So,

he sums all probabilities within a certain interval which is |Sn − n
2
| ≤ n

3
5 in his

case. We will consider the more general case |Sn − n
2
| ≤ nβ which results in the

equation

1

cn
√
n

∑
k:|ykn|≤nβ−

1
2

P (Sn = k) =
1√
n

∑
k:|ykn|≤nβ−

1
2

e−2y2kn +
∑

k:|ykn|≤nβ−
1
2

O
(
n2β−2.5

)
.

(2.25)
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The next step is to find out what the sum
∑

k:|ykn|≤nβ−
1
2
P (Sn = k) means. Using

Equation (2.5), we get

∑
k:|ykn|≤nβ−

1
2

P (Sn = k) =
∑

k:|ykn|≤nβ−
1
2

P

(
Sn − n

2√
n

= ykn

)

=
∑

k:|ykn|≤nβ−
1
2

P

(∣∣∣∣Sn − n
2√

n

∣∣∣∣ = |ykn|
)

= P

(∣∣∣∣Sn − n
2√

n

∣∣∣∣ ≤ nβ−
1
2

)
= P

(∣∣∣Sn − n

2

∣∣∣ ≤ nβ
)
. (2.26)

Now, we have to determine the value of
∑

k:|ykn|≤nβ−
1
2
O
(
n2β−2.5

)
. SinceO

(
n2β−2.5

)
does not depend on k, it is enough to find the cardinality of the set I = {k : |ykn| ≤
nβ−

1
2} and to multiply it by O

(
n2β−2.5

)
. The following steps show how to find the

cardinality of I:

−nβ−
1
2 ≤ ykn ≤ nβ−

1
2

−nβ ≤ k − n

2
≤ nβ

−nβ +
n

2
≤ k ≤ nβ +

n

2

Thus, I contains about nβ + n
2
−
(
−nβ + n

2

)
= 2nβ elements.

Equation (2.25) therefore reduces to

1

cn
√
n
P
(∣∣∣Sn − n

2

∣∣∣ ≤ nβ
)

=
1√
n

∑
k:|ykn|≤nβ−

1
2

e−2y2kn + 2nβ · O
(
n2β−2.5

)︸ ︷︷ ︸
O(n3β−2.5)

.

Now, Krylov regards the limit on both sides. Of course, it would be great if

O
(
n3β−2.5

)
disappears. The condition that this holds is

3β − 2.5 < 0⇒ β <
5

6
. (2.27)
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Thus, we have a new condition for the values of β: β ∈
(

1
2
, 5

6

)
.

This leads to the equation

lim
n→∞

1

cn
√
n
P
(∣∣∣Sn − n

2

∣∣∣ ≤ nβ
)

= lim
n→∞

Jn (2.28)

where

Jn :=
1√
n

∑
k:|ykn|≤nβ−

1
2

e−2y2kn . (2.29)

The probability P
(∣∣Sn − n

2

∣∣ ≤ nβ
)

can be estimated by Chebyshev’s inequality.

You can find a short proof of this theorem in Appendix A.3.

Thus it holds,

1 ≥ P
(∣∣∣Sn − n

2

∣∣∣ ≤ nβ
)

= 1− P
(∣∣∣Sn − n

2

∣∣∣ ≥ nβ
)

≥ 1−
n
4

n2β
= 1− 1

4
nn−2β = 1− 1

4
n1−2β ≥ 1− n1−2β.

Regarding the limit of the probability, it would be fine if the term n1−2β vanishes.

For this, it must hold 1−2β < 0⇒ β > 1
2
. This condition is absolutely compatible

with the condition β ∈
(

1
2
, 5

6

)
.

So, we get

lim
n→∞

P
(∣∣∣Sn − n

2

∣∣∣ ≤ nβ
)

= 1.

for β ∈
(

1
2
, 5

6

)
. Equation (2.28) thus reduces to

lim
n→∞

1

cn
√
n

= lim
n→∞

Jn. (2.30)
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Now, it is time to find limn→∞ Jn. Due to the symmetry of the Gaussian function,

the definition of Jn (see Equation (2.29)) can be rewritten as

Jn =
1√
n

∑
k:|ykn|≤nβ−

1
2

e−2y2kn

=
1√
n

[ ∑
k<n

2
:ykn≤nβ−

1
2

e−2y2kn +
∑
k=n

2

e−2y2kn

︸ ︷︷ ︸
1

+
∑

k>n
2

:ykn≤nβ−
1
2

e−2y2kn

]

=
1√
n

+ 2 · 1√
n

∑
k>n

2
:ykn≤nβ−

1
2

e−2y2kn . (2.31)

To calculate the sum ∑
k>n

2
:ykn≤nβ−

1
2

e−2y2kn , (2.32)

it is important to notice some properties. By looking at Figure 2.4 we can see that

for k ≥ n
2

e−2y2kn ≤ e−2y2 for 0 ≤ y ≤ ykn, e−2y2kn ≥ e−2y2kn for 0 ≤ ykn ≤ y. (2.33)

ykn

yk+1,n

y

Figure 2.4: ykn, y and yk+1,n on Gaussian function
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Thus, for k > n
2

we also can observe in Figure 2.5 that∫ ykn

yk−1,n

e−2y2dy︸ ︷︷ ︸
A

≥ 1√
n
e−2y2kn︸ ︷︷ ︸
B

≥
∫ yk+1,n

ykn

e−2y2dy︸ ︷︷ ︸
C

. (2.34)

A

B C

Figure 2.5: Areas under Gaussian function (A: Dashed blue area, B: Violet blue

area, C: Orange area)

By Equation (2.31) and Inequality (2.34), we can infer that

∑
k>n

2
:ykn≤nβ−

1
2

∫ ykn

yk−1,n

e−2y2dy ≥
Jn − 1√

n

2
≥

∑
k>n

2
:ykn≤nβ−

1
2

∫ yk+1,n

ykn

e−2y2dy (2.35)

∫ ȳn

0

e−2y2dy ≥
Jn − 1√

n

2
≥
∫ ȳn

yn
2 +1,n

e−2y2dy (2.36)

∫ ȳn

0

e−2y2dy ≥
Jn − 1√

n

2
≥
∫ ȳn

0

e−2y2dy −
∫ yn

2 +1,n

0

e−2y2dy (2.37)

where ȳn is the largest ykn such that ykn ≤ nβ−
1
2 . Because of

yn
2

+1,n =
n
2

+ 1− n
2√

n
=

1√
n
,
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by building the limit for n→∞ of all terms, we get

lim
n→∞

∫ ȳn

0

e−2y2dy ≥ lim
n→∞

Jn − 1√
n

2
≥ lim

n→∞

∫ ȳn

0

e−2y2dy − lim
n→∞

∫ 1√
n

0

e−2y2dy︸ ︷︷ ︸
0

⇒ lim
n→∞

Jn − 1√
n

2
= lim

n→∞

∫ ȳn

0

e−2y2dy.

It is obviously that ȳn →∞ as n→∞. So, finally by adjusting the calculation in

Appendix A.1, we get

lim
n→∞

Jn = 2

∫ ∞
0

e−2y2dy

=

√
π

2
. (2.38)

Combining this result with Equation (2.30) leads to

lim
n→∞

1

cn
√
n

=

√
π

2

⇒ lim
n→∞

cn
√
n =

1√
π
2

=

√
2

π
. (2.39)

2.2.3 Part 3

With few more steps, we will come to another beautiful result. Let us regard

Equation (2.28) again and put in the result from Equation (2.39):√
π

2
lim
n→∞

P
(∣∣∣Sn − n

2

∣∣∣ ≤ nβ
)

= lim
n→∞

Jn

Now, we change the limits of the interval for Sn − n
2
. Let us set β = 1

2
and regard

the interval a
√
n ≤ Sn − n

2
≤ b
√
n such that a < b. This gives√

π

2
lim
n→∞

P

(
a ≤

Sn − n
2√

n
≤ b

)
= lim

n→∞

1√
n

∑
k:a≤ykn≤b

e−2y2kn
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If we take a closer look at the right hand side of the equation above, we rec-

ognize that it is a proper integral expression. 1√
n

is the width of the
”
Riemann

rectangles“ and e−2y2kn is the function value of e−2y2 at ykn. As we saw at Equa-

tion (2.2), the distance between two ykn’s is indeed 1√
n
. Thus, finally we get the

same beautiful result as Krylov, namely

lim
n→∞

P

(
a ≤

Sn − n
2√

n
≤ b

)
=

√
2

π

∫ b

a

e−2y2dy. (2.40)

The general one-dimensional cumulative distribution function of the normal dis-

tribution is

F (x) =
1

σ
√

2π

∫ x

−∞
e−

1
2( t−µσ )

2

dt

where µ is the expectation value and σ2 the variance of the random variable con-

sidered.

In our case, we have µ = 0 and σ2 = 1
4
. If we put these values in the cumu-

lative distribution function from above, we get

F (x) =
1√
π
2

∫ x

−∞
e−

1
2(4t2)dt

=

√
2

π

∫ x

−∞
e−2t2dt.

Hence, for a normal distributed random variable X it holds that

P (a ≤ X ≤ b) = F (b)− F (a) =

√
2

π

∫ b

a

e−2t2dt.

But this is the same result as we found at Equation (2.40). Therefore we have

shown that the cumulative distribution function of the binomial distribution con-

verges to the one of the normal distribution as n→∞.
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2.2.4 Part 4

As a corollary of Part 2 (2.2.2), we can also show that the maximal error for

β ∈
(

1
2
, 5

6

)
converges to zero as n → ∞. We have already shown it graphically in

Section 1.4.

Let us again regard Equation (2.22) and some manipulations of it to see the result:

φn(0)−1e−2y2knφn(ykn) = 1 +O
(
n2β−2

)
⇔ 1

cn
√
n
e−2y2kn

√
nfn(ykn) = 1 +O

(
n2β−2

)
⇔ max

|k−n
2
|≤nβ

∣∣∣∣ 1

cn
√
n
e−2y2kn

√
nfn(ykn)− 1

∣∣∣∣ = max
|k−n

2
|≤nβ
O
(
n2β−2

)
⇔ lim

n→∞
max

|k−n
2
|≤nβ

∣∣∣∣√nπ

2
e−2y2knfn(ykn)− 1

∣∣∣∣ = 0

This is exactly the result which Krylov also comes to.
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Comments

3.1 Limits of the β-Interval

In Krylov’s paper, he uses
[

1
2
, 3

4

]
as the interval for β. This interval was used for

all parts. As we saw, our interval was chosen to
(

1
2
, 1
]

for the first part and to(
1
2
, 5

6

)
for the remainder parts.

During a step in Part 1 (2.2.1), in which Krylov computed
∑k

i=n
2

(
x2
in + x2

i+1,n

)
,

he says that O
(
n2β−2

)
= O

(
n4β−3

)
. He hence restricts the interval for β due to

the order of n4β−3 to
[

1
2
, 3

4

]
.

I could not find his reason for this restriction, and so I chose my intervals for

this thesis.

3.2 The Proof for odd n

The proof discussed in Chapter 2 assumes that n is an even number. If we want

to do the proof with odd n, we have to be careful at some points. But first, let us

regard the most evident difference between a binomial distributed random variable

with an even and an odd number of trials.

In Figure 3.1 we can see that the binomial distribution for even n has one value
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with the maximum probability. In contrast, for an odd number of trials the dis-

tribution has two values with the maximum probability.

0 5 10 15

0.05

0.10

0.15

0.20
n=15

0 5 10 15

0.05

0.10

0.15

0.20
n=16

Figure 3.1: Binomial distribution with p = 1
2

for n = 15 and n = 16

To go on with the proof, we have to treat the parts 1-4 differently. The number

of trails n is now an odd number unless stated otherwise.

In Part 1, Krylov uses i = n
2

as the starting index for the sums. This can not

be done in the odd case. I tried to do the same calculations as we did for even n

but for i = n+1
2

. Unfortunately, I did not come to any result with this method.

I guess that the xkn-transformation has to be adjusted such that we get similar

results as in the even case. Let us say that zkn is this transformation. Then it has

to satisfy the following equation:

k∑
i=n+1

2

(zin + zi+1,n) = 2y2
k+1,n.

It is getting easier when we regard Part 2 (2.2.2). The sequence Jn was defined as

Jn :=
1√
n

∑
k:|ykn|≤nβ−

1
2

e−2y2kn .

In Equation (2.31), we divided the sum in three parts. Now the middle part for
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k = n
2

disappears because n is odd. We therefore can rewrite Jn as

Jn = 2 · 1√
n

∑
k>n

2
:ykn≤nβ−

1
2

e−2y2kn .

The properties stated in Inequalities (2.33) also hold for odd n but this time for

k > n
2
. The Inequality (2.34) was stated for k ≥ n

2
. Here it is necessary to look at

the inequality with k ≥ n+1
2

= dn
2
e.

Inequalities (2.35)-(2.37) thus become

∑
k>dn

2
e:ykn≤nβ−

1
2

∫ ykn

yk−1,n

e−2y2dy ≥ Jn
2
≥

∑
k>dn

2
e:ykn≤nβ−

1
2

∫ yk+1,n

ykn

e−2y2dy

∫ ȳn

ydn2 e,n

e−2y2dy ≥ Jn
2
≥
∫ ȳn

ydn2 e+1,n

e−2y2dy∫ ȳn

0

e−2y2dy −
∫ ydn2 e,n

0

e−2y2dy ≥ Jn
2
≥
∫ ȳn

0

e−2y2dy −
∫ ydn2 e+1,n

0

e−2y2dy

where ȳn is the largest ykn such that ykn ≤ nβ−
1
2 .

Because of

ydn
2
e,n =

n+1
2
− n

2√
n

=
1
2√
n

=
1

2
√
n
−−−→
n→∞

0

and

ydn
2
e+1,n =

n+1
2

+ 1− n
2√

n
=

3
2√
n

=
3

2
√
n
−−−→
n→∞

0,

we get the same result for Jn as for the even case. Hence, it holds

lim
n→∞

Jn = 2

∫ ∞
0

e−2y2dy =

√
π

2
.

Now, we could continue as in Part 2 and get the same result.

A different treatment of even and odd n for Part 3 (2.2.3) and Part 4 (2.2.4)

is not necessary.
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Appendix

A.1 Gaussian Integral

We will look at two different ways to compute the Gaussian integral. The Gaussian

integral is

A =

∫ ∞
−∞

exp

(
−1

2
z2

)
dz.

Due to the symmetry of the Gaussian function, it suffices to compute

I =

∫ ∞
0

exp

(
−1

2
z2

)
dz

such that A = 2I.

1. Double integration

This method goes back to Laplace and was published in [Lap12]. First, it is

important to note that

I =

∫ ∞
0

exp

(
−1

2
z2

)
dz =

∫ ∞
0

exp

(
−1

2
(xy)2

)
y dx

with the substitution z = xy. By renaming y in z it follows that

I =

∫ ∞
0

exp

(
−1

2
(xz)2

)
z dx,
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such that

I2 =

(∫ ∞
0

exp

(
−1

2
z2

)
dz

)(∫ ∞
0

exp

(
−1

2
(xz)2

)
z dx

)
=

∫ ∞
0

∫ ∞
0

exp

(
−1

2

(
x2 + 1

)
z2

)
z dz dx.

Set (x2 + 1) z2 = 2t such that z dz = dt
x2+1

to get

I2 =

∫ ∞
0

∫ ∞
0

exp (−t) dt

x2 + 1
dx =

(∫ ∞
0

exp (−t) dt
)(∫ ∞

0

dx

x2 + 1

)
= [− exp(−t)]∞0 [arctan(x)]∞0

=
π

2

It follows that I =
√

π
2

such that

A = 2

√
π

2
=
√

2π.

2. Double integration in the Cartesian coordinate system

This is the
”
usual“ double integration method. It was used by Siméon Denis Pois-

son and popularized by Sturm in [SP59]. As above, it is I2 which is computed.

So,

I2 =

(∫ ∞
0

exp

(
−1

2
x2

)
dx

)(∫ ∞
0

exp

(
−1

2
y2

)
dy

)
=

∫ ∞
0

exp

(
−1

2
(x2 + y2)

)
dx dy.

II



APPENDIX

Now, the integral is computed with polar coordinates (r, θ) in which dx dy = r dr dθ

such that

I2 =

∫ π
2

0

∫ ∞
0

exp

(
−1

2
r2

)
r dr dθ

=

(∫ π
2

0

dθ

)(∫ ∞
0

exp

(
−1

2
r2

)
r dr

)
= [θ]

π
2
0

[
−exp

(
−1

2
r2

)]∞
0

=
π

2

As above, it follows that I =
√

π
2

and A = 2
√

π
2

=
√

2π.
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A.2 Motivation with Normalized Random Vari-

able

Here, we carry out the same calculation as in Section 2.1, but without many com-

ments due to similarity. We try to derive the proper density function of the normal

distribution.

So, in contrast to Section 2.1, the random variable Sn is normalized to Zn which

means that E (Zn) = 0 and V ar (Zn) = 1.

Thus,

Zn =
Sn − µn
σn

,

where µn is the expectation value and σ2
n the variance of Sn.

To prove the normality of Zn only a few calculation steps are necessary:

E (Zn) = E

(
Sn − µn
σn

)
=

1

σn
E (Sn − µn)

=
1

σn
(E (Sn)− E (µn))

=
1

σn
(µn − µn) = 0

V ar (Zn) = V ar

(
Sn − µn
σn

)
=

1

σ2
n

V ar (Sn − µn)

=
1

σ2
n

V ar (Sn)

=
1

σ2
n

σ2
n = 1
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The variables are specified similarly as in Section 2.1:

ykn =
k − µn
σn

, k = 0, 1, . . . , n,

yk+1,n =
k + 1− µn

σn

=
k − µn
σn

+
1

σn

= ykn +
1

σn
,

k = σnykn + µn,

fn(ykn) = P (Sn = k) = P

(
Sn − µn
σn

= ykn

)
Substituting these definitions in Equation (2.6) leads to

fn(ykn) = fn(yk+1,n)
σnykn + µn + 1

n− (σnykn + µn)

⇔ fn

(
ykn +

1

σn

)
= fn(ykn)

n− σnykn − µn
σnykn + µn + 1

⇔ fn

(
ykn +

1

σn

)
− fn(ykn) = fn(ykn)

(
n− σnykn − µn
σnykn + µn + 1

− 1

)
⇔ fn

(
ykn +

1

σn

)
− fn(ykn) = fn(ykn)

n− 2σnykn − 2µn − 1

σnykn + µn + 1
.

Because of φn(ykn) :=
√
nfn(ykn) → φ(y) as n → ∞ and ykn → y, the equation

becomes

φ

(
y +

1

σn

)
− φ(y) = φ(y)

n− 2σny − 2µn − 1

σny + µn + 1
.

Dividing both sides by 1
σn

leads to

φ
(
y + 1

σn

)
− φ(y)

1
σn

= φ(y)
nσn − 2σ2

ny − 2µnσn − σn
σny + µn + 1

.
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Now, it is time to put some concrete values in this equation. These values are

µn = n
2

and σ2
n = n

4

(
σn =

√
n

2

)
, so that they let the equation look like

φ
(
y + 2√

n

)
− φ(y)

2√
n

= −φ(y)
n
2
y +

√
n

2√
n

2
y + n

2
+ 1

.

With this, it is easy to get the ODE. We just have to let n → ∞ on both sides

which gives

φ′(y) = −y φ(y).

Without any problems, by using the integrating factors method again we can find

the general solution of this ODE which is

φ(y) = c e−
1
2
y2 .

And here you can see the proper density function of the normal distribution. This

is exactly what we wanted to show for the normalized random variable Zn.
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A.3 Short Proof of Chebyshev’s Inequality

Theorem (Chebyshev’s Inequality). Let X be an integrable random variable.

Then for every ε > 0

P (|X − E(X)| ≥ ε) ≤ V ar(X)

ε2
.

Proof. Obviously it is

|X − E(X)|2 ≥ |X − E(X)|21{ω:|X(ω)−E(X)|≥ε}

≥ ε21{ω:|X(ω)−E(X)|≥ε}.

Formation of the expectation value leads to

V ar(X) = E(|X − E(X)|2)

≥ E(ε21{ω:|X(ω)−E(X)|≥ε})

= ε2P (|X − E(X)| ≥ ε).

This proof is from [Irl05, p.132].
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