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discovery of his may lead."
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Abstract

Since its mathematical formulation, Brownian motion is the most im-
portant stochastic process in probability theory. In the Fourties and Fifties,
pioneers as Kakutani and Doob did some research in the area of stochas-
tical analysis and recognized the importance of Brownian motion for the
Dirichlet problem.

This master thesis intends to give an explanation of the connection of
Brownian motion and the Dirichlet problem in a modern, mathematical and
closed context.

Although the results can be further generalized to Markov processes,
in case of Brownian motion and its useful properties, they stay clear and
understandable which effects the corresponding proofs.

Zusammenfassung

Seit ihrer mathematischen Formulierung ist die Brownsche Bewegung
der wichtigste stochastische Prozess der Wahrscheinlichkeitstheorie. In den
1940er und 1950er Jahren forschten Pioniere wie Kakutani und Doob im
Gebiet der stochastischen Analysis und erkannten die Bedeutung der Brown-
schen Bewegung für das Dirichlet-Problem.

Diese Masterarbeit beabsichtigt die Behandlung und Erklärung des Zu-
sammenhangs der Brownschen Bewegung und des Dirichlet-Problems in ei-
nem modernen, mathematischen und abgeschlossenen Kontext.

Obwohl die Ergebnisse noch weiter auf Markov-Prozesse abstrahiert und
verallgemeinert werden können, bleiben sie im Falle der Brownschen Bewe-
gung und ihrer nützlichen Eigenschaften übersichtlich und verständlich, was
sich in den zugehörigen Beweisen bemerkbar macht.





Preface

This thesis represents the end of my master studies in Mathematics at the LMU
Munich. The topic was offered by my supervisor Prof. Dr. Gregor Svindland
(LMU Munich, Department of Mathematics) and came out of a little conversation
about possible topics which could fit for a master thesis.

The title of this thesis is Brownian Motion and the Dirichlet Problem which
is a subject in a small but beautiful area of stochastic analysis, the area in which
stochastics and analysis touch. My thesis is divided into two chapters. The first
one is a preparation for the main result(s) in the second chapter. It provides a
modern, mathematical setting and contains important basic definitions and first
results which will be used to prove the two main outcomes, the Markov property
and the strong Markov property of one-dimensional Brownian motion. The second
chapter is the main part of this thesis in which we use the properties of Brownian
motion to establish a connection to the Dirichlet problem. In the beginning, we
prove some basic PDE results to provide a suitable framework good to work with.
Afterwards, we prove the first main result concerning the Dirichlet problem on
bounded domains which has a nice application for the path behavior of (multi-
dimensional) Brownian motion. In the end, we treat the Dirichlet problem on
unbounded domains and additionally find a probabilistic result to a boundary
value problem for the Poisson equation.

Throughout the whole thesis, I worked a lot with Liggett’s book Continuous
Time Markov Processes ([1]). This text gave me the most inspiration, so I used
many results, ideas and examples from it. The PDE results in the first section of
the second chapter were heavily influenced by Evans’ Partial Differential Equations
([2]). In some places, I used [3] and [4], but these are rather exceptional.

All this was fun! I would like to thank Prof. Dr. Gregor Svindland for his
support and answering my questions in several sessions. Furthermore, my whole
master studies would not have been possible without the German National Aca-
demic Foundation which supported me with a scholarship the whole time. I really
appreciate their trust and their help which makes me feel responsible for the future
to give something back.

This thesis is dedicated to all people who believe in me. First of all, I would



like to thank my family for their support during my whole life. But I would not
be the same character as I am today without my friends. All the times we spent
talking, joking, laughing and crying made me the person I am today.

Thank you!

Mario Teixeira Parente Munich, April 2, 2016
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Chapter 1

Preparation:
One-Dimensional Brownian Motion

The first chapter intends to give an introduction, in which we will define a suitable
context, and wants to prepare some important results for the main chapter —
Chapter 2. There will be some results which seem special and not that important
at first sight, but they will play a significant role at some point later. The two main
outcomes of this chapter are the Markov property and the strong Markov property
for one-dimensional Brownian motion. In general, they have a huge amount of
applications; we will need them to deal with harmonicity in the second chapter.

1.1 Basics

1.1.1 Setting

As mentioned, we need a suitable context, in which we are doing our mathematics.
The most important object — Brownian motion — has to be defined clearly, and
afterwards we have to choose a suitable probability space on which the Brownian
motion can live.

Definition 1.1. A stochastic process (Bt)t≥0 is called a standard Brownian
motion on a probability space (Ω,F ,P), if it satisfies the following properties:

(i) B0 = 0 P-a.s.

(ii) t 7→ Bt(ω) is continuous for every ω ∈ Ω.

(iii) If 0 ≤ s < t, then Bt −Bs ∼ N (0, t− s).
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(iv) For 0 ≤ t0 < t1 < . . . < tk, the increments
(
Bti+1 −Bti

)
i=0,...,k−1

are
independent.

Figure 1.1: Two sample paths of one-dimensional Brownian motion

Since Brownian motion is defined only by distributional properties, we are free in
our choice of a probability space (Ω,F ,P) for it. There are many possibilities for
this choice.

We decide to use the so-called canonical model. Here, the sample space Ω is
chosen to be

C0[0,∞) := {ω : [0,∞)→ R : ω is continuous and ω(0) = 0} ,

which is the set of all R-valued continuous functions on [0,∞) starting at 0. This
choice is natural and makes perfect sense, since the paths of Brownian motion
(sometimes also called "Brownian paths") are defined to be continuous and start
in 0. For the corresponding σ-algebra F , let us first define the projection function,
which is

(1.1) πt : Ω→ R, ω 7→ ω(t), t ≥ 0.

This function simply evaluates a Brownian path at time t ≥ 0. F is defined as the
smallest σ-algebra for which the projection πt is measurable for each t ≥ 0. The
probability measure P is chosen in such a way that the stochastic process (Bt)t≥0,
defined as

B : [0,∞)× Ω→ R, (t, ω) 7→ ω(t)
becomes a standard Brownian motion on (Ω,F ,P). There is such a probability
measure, called the Wiener measure, which can be constructed in a formal way —
see [3].

In almost every case dealing with Brownian motion, we have to consider an ar-
bitrary starting point x ∈ R, which can be different from 0. For this, we introduce a
whole new family of probability measures (Px)x∈R on (Ω,F). A probability measure
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Px, x ∈ R, is defined to be the distribution of the random variable t 7→ Bt(·) + x,
i.e.

(1.2) Px (A) := P ((t 7→ Bt + x) ∈ A) , A ∈ F ,

where B is a standard Brownian motion. Hence, for x ∈ R, it holds that

B0 = x Px-a.s.,

which means that Brownian motion is starting from x under the probability mea-
sure Px. It remains to mention that the expectation under Px is denoted by Ex.

Before dealing with the (strong) Markov property, we need the notion of a
filtration (Ft)t≥0 which, from a mathematical point of view, is an increasing family
of sub-σ-algebras of F . Ft can be interpreted as the information we have about
the process at time t ≥ 0. In our case, it is natural to define F0

t , t ≥ 0, as the
smallest σ-algebra with respect to which the projection πs is measurable for each
0 ≤ s ≤ t. Unfortunately, the filtration (F0

t )t≥0 is not right-continuous, but this
property becomes very important later. We can solve this problem by defining

Ft :=
⋂
s>t

F0
s , t ≥ 0.

Indeed, we get ⋂
s>t

Fs =
⋂
s>t

( ⋂
r>s

F0
r

)
=
⋂
r>t

F0
r = Ft,

which shows the right-continuity of Ft and completes setting up our mathematical
context.

Beside the Markov property, there is another notion that has become very
important for probability theory: The notion of a martingale.

Definition 1.2. Let P be a probability measure and (Gt)t≥0 a filtration
on some probability space. A family of integrable adapted random variables
(Mt)t≥0 is called a martingale, if it holds for 0 ≤ s < t

E [Mt | Gs] = Ms P-a.s.

The next proposition lists some martingales constructed with Brownian motion.
We will need them later in Chapter 2.

Proposition 1.3. Let x ∈ R and assume that all B’s occurring below are stan-
dard Brownian motions on (Ω,F ,P). Then it holds (each time under Px):
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(a) (B2
t − t)t≥0 is a martingale with respect to (Ft)t≥0.

(b) If (B̃t)t≥0 and (B̂t)t≥0 are independent, then (B̃tB̂t)t≥0 is a martingale with
respect to the (right-continuous) filtration generated by the two processes.

(c) (B4
t − 6tB2

t + 3t2)t≥0 is a martingale with respect to (Ft)t≥0.

Remark. For the proof, recall that for a Brownian motion (Bt)t≥0 and 0 ≤ s < t,
Bt −Bs is independent of Fs.

Proof of Proposition 1.3. (a): For t ≥ 0,

Ex
∣∣∣B2

t − t
∣∣∣ ≤ ExB2

t︸ ︷︷ ︸
=t

+t = 2t <∞

shows the integrability. Obviously, it is adapted to (Ft)t≥0. For the martingale
property, let 0 ≤ s < t and compute

Ex
[
B2
t − t

∣∣∣Fs] = Ex
[
(Bt −Bs +Bs)2

∣∣∣Fs]− t
= Ex

[
(Bt −Bs)2

∣∣∣Fs]+ 2Ex [(Bt −Bs)Bs | Fs] + Ex
[
B2
s

∣∣∣Fs]− t
(∗)= Ex

[
(Bt −Bs)2

]
︸ ︷︷ ︸

=t−s

+2Bs Ex [Bt −Bs]︸ ︷︷ ︸
=0

+B2
s − t

= t− s+B2
s − t = B2

s − s Px-a.s.,

where we used the independence of the increments at (∗).
(b): Integrability: For t ≥ 0,

ExB̃tB̂t = ExB̃t ExB̂t = x2 <∞.

Let (Gt)t≥0 be the right-continuous filtration generated by (B̃t)t≥0 and (B̂t)t≥0.
Adaptedness is obvious. Martingale property: For 0 ≤ s < t, we get

Ex
[
B̃tB̂t

∣∣∣Gs] = Ex
[
(B̃t − B̃s + B̃s)B̂t

∣∣∣Gs]
= Ex

[
(B̃t − B̃s)B̂t

∣∣∣Gs]+ Ex
[
B̃sB̂t

∣∣∣Gs]︸ ︷︷ ︸
=B̃sB̂s

= Ex
[
(B̃t − B̃s)(B̂t − B̂s + B̂s)

∣∣∣Gs]+ B̃sB̂s

= Ex
[
(B̃t − B̃s)(B̂t − B̂s)

∣∣∣Gs]+ Ex
[
(B̃t − B̃s)B̂s

∣∣∣Gs]+ B̃sB̂s

= Ex
[
B̃t − B̃s

]
︸ ︷︷ ︸

=0

Ex
[
B̂t − B̂s

]
︸ ︷︷ ︸

=0

+B̂s Ex
[
B̃t − B̃s

]
︸ ︷︷ ︸

=0

+B̃sB̂s

= B̃sB̂s Px-a.s.,
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where we used the independence of the increments again.
(c): The process is integrable, since

Ex
∣∣∣B4

t − 6tB2
t + 3t2

∣∣∣ ≤ ExB4
t︸ ︷︷ ︸

=3t2

+6t ExB2
t︸ ︷︷ ︸

=t

+3t2 = 12t2 <∞

for t ≥ 0. Adaptedness is again obvious. Using the independence of the increments,
we can show the martingale property by

Ex
[
B4
t − 6tB2

t + 3t2
∣∣∣Fs]

= Ex
[
(Bt −Bs +Bs)4

∣∣∣Fs]− 6tEx
[
(Bt −Bs +Bs)2

∣∣∣Fs]+ 3t2

= Ex
[
(Bt −Bs)4 + 4(Bt −Bs)3 + 6(Bt −Bs)2B2

s + 4(Bt −Bs)B3
s +B4

s

∣∣∣Fs]
− 6tEx

[
(Bt −Bs)2 + 2(Bt −Bs)Bs +B2

s

∣∣∣Fs]+ 3t2

= Ex
[
(Bt −Bs)4

]
︸ ︷︷ ︸

=3(t−s)2

+4Bs Ex
[
(Bt −Bs)3

]
︸ ︷︷ ︸

=0

+6B2
s Ex

[
(Bt −Bs)2

]
︸ ︷︷ ︸

=t−s

+4B3
s Ex [Bt −Bs]︸ ︷︷ ︸

=0

+B4
s

− 6t
(
Ex
[
(Bt −Bs)2

]
︸ ︷︷ ︸

=t−s

+2Bs Ex [Bt −Bs]︸ ︷︷ ︸
=0

+B2
s

)
+ 3t2

= 3t2 − 6st+ 3s2 + 6(t− s)B2
s +B4

s − 6t2 + 6st− 6tB2
s + 3t2

= B4
s − 6sB2

s + 3s2 Px-a.s.

for each s, t ∈ R with 0 ≤ s < t. �

1.1.2 Hitting times

This subsection introduces the notion of a stopping time, which will help us in many
situations and is a necessary ingredient for stating the strong Markov property.

Definition 1.4. A random variable τ : Ω→ [0,∞) is called a stopping time
(with respect to the filtration (Ft)t≥0), if it holds

{τ ≤ t} ∈ Ft for all t ≥ 0.

A hitting time is a special type of a stopping time. It will play an important role,
when dealing with bounded domains related to the Dirichlet problem in Chapter 2.
Proposition 1.5 and 1.7 deal with hitting times of open and closed sets.

Proposition 1.5. Let G ⊂ R be open and define τ := inf{t > 0 : Bt ∈ G}.
Then τ is a stopping time.
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Proof. We need to prove that

{τ ≤ t} ∈ Ft for all t ≥ 0.

Note that it suffices to show that

{τ < t} ∈ Ft for all t ≥ 0.

Indeed, for t ≥ 0, we see that

{τ ≤ t} =
⋂
n∈N

{
τ < t+ 1

n

}
∈
⋂
n∈N
Ft+ 1

n
= Ft.

So, let t > 0. We claim that

{τ < t} =
⋃

0≤s<t
s∈Q

{Bs ∈ G}.

Indeed, if τ(ω) < t, there is some 0 ≤ r < t, r ∈ R, such that Br ∈ G. Since G is
open and the sample paths are continuous, we find some r < s < t, s ∈ Q, with
Bs ∈ G. Thus, ω ∈ ⋃0≤s<t

s∈Q
{Bs ∈ G}.

Conversely, let ω ∈ {Bs ∈ G} for some 0 ≤ s < t, s ∈ Q. Since G is open and
the sample paths are continuous, we get τ(ω) ≤ s < t.

For completeness, if t = 0, then

{τ < 0} = ∅ ∈ F0.

�

Lemma 1.6. If (τn)n∈N is an increasing or decreasing sequence of stopping times
such that τn n→∞−−−→ τ , then τ is again a stopping time.

Proof. First, let (τn)n∈N be increasing, i.e. τn ≤ τ for every n ∈ N. Then, it holds

{τ ≤ t} =
⋂
n∈N
{τn ≤ t}︸ ︷︷ ︸
∈Ft

∈ Ft

for all t ≥ 0.
Now, let (τn)n∈N be decreasing, i.e. τn ≥ τ for every n ∈ N. Then, it holds

{τ > t} =
⋂
n∈N
{τn > t}︸ ︷︷ ︸
∈Ft

∈ Ft

for all t ≥ 0. It follows that {τ ≤ t} = {τ > t}c ∈ Ft for all t ≥ 0. �
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Proposition 1.7. Let F ⊂ R be closed and define τ := inf{t > 0 : Bt ∈ F}.
Then τ is a stopping time.

Proof. We approximate F by a sequence of open neighborhoods from the outside.
For n ∈ N, define

Gn :=
{
x ∈ R : |x− y| < 1

n
for some y ∈ F

}
and let τn be the hitting time of Gn. Note that τn is a stopping time for every
n ∈ N by Proposition 1.5 and that the sequence (τn)n∈N is increasing, since Gn

is decreasing. Hence, by Lemma 1.6, σ := limn→∞ τn is again a stopping time.
Furthermore, note that σ ≤ τ , since τn ≤ τ for each n ∈ N. So, it suffices to show
that Bσ ∈ F implying τ ≤ σ, and thus τ = σ. In doing so, we only regard the
event {σ <∞}, since τ ≤ σ is clear on the complementary event. If k ≤ m, then

Bτm ∈ Gm ⊂ Gk.

It follows by path continuity,

Bσ = lim
n→∞

Bτn ∈
⋂
n∈N

Gn = F,

where the last equality comes from the closedness of F . Hence, τ = σ implying
that τ is a stopping time. �

Remark. (a) A stopping time defined as τ above in Proposition 1.5 and 1.7 is
called a hitting time of G, or F respectively.
(b) This chapter deals with Brownian motion in one dimension, but the proofs of
Proposition 1.5 and 1.7 also apply well to Brownian motion with values in a metric
space.

1.2 The Markov property

Before taking care of the Markov property itself, we have to introduce some rather
technical instruments and results. The next definition brings random variables of a
specific form and particular sets of F into play. In this section and also in the next
one, we will prove some statements only for these kinds of random variables and
sets. The monotone class theorem — Theorem A.8 — will allow us to generalize
the statements suitably.
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Definition 1.8. A random variable X is called special, if it is of the form

(1.3) X(ω) =
n∏

m=1
fm(ω(tm)),

where 0 < t1 < . . . < tn and f1, . . . , fn are continuous functions on R tending
to 0 at ±∞. Correspondingly, A ∈ F is said to be finite-dimensional, if there
exist points in time 0 < r1 < . . . < rk and open subsets A1, . . . , Ak of R such
that

(1.4) A = {ω ∈ Ω : ω(r1) ∈ A1, . . . , ω(rk) ∈ Ak} .

Note that F is the smallest σ-algebra containing all finite-dimensional sets.
The next few lines are dedicated to show that the generalization via the mono-

tone class theorem indeed works. First, note that the appearing π-systems P ,
containing finite-dimensional sets, indeed fulfill the properties of a π-system (Def-
inition A.6), since the intersection of two finite-dimensional sets is again finite-
dimensional by ordering the corresponding points in time. Additionally, Ω ∈ P is
required by the monotone class theorem, but this case is obvious (choose A1 = R).

The sets H in the upcoming proofs will always contain bounded random vari-
ables fulfilling the statement we want to show. The vector space properties and
property (ii) of the monotone class theorem can be easily shown for all appearing
H’s on the next pages. The interesting part for H to prove is property (i):

(1.5) 1A ∈ H for finite-dimensional A ∈ F .

So, take a finite-dimensional A ∈ F . Observe that

1A(ω) =
n∏

m=1
1Am(ω(tm)).

Furthermore, note that each 1Am , m ∈ [n], can be approximated by an increasing
sequence of continuous function (fkm)k∈N tending to 0 at ±∞, for example

fkm(x) := 1 ∧ k dist(x,Acm) k→∞−−−→ 1Am(x),

where dist(x, S) := inf {|x− y| : y ∈ S} is continuous in x for every open set S.
Note that if Am = R for some m ∈ [n], then dist(x,Acm) = inf ∅ =∞. This yields
to

(1.6) 1A(ω) = lim
k→∞

n∏
m=1

fkm(ω(tm)).
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Hence, if we can prove X ∈ H for a special random variable X, we know that (1.5)
holds by (1.6) and property (ii) of the monotone class theorem.

So, whenever we use the monotone class theorem on the next pages, it suffices
to show the relevant statement for special random variables and finite-dimensional
sets, and to prove that the corresponding H satisfies the properties required.

Proposition 1.9. Let X be a bounded random variable. Then the function

R 3 x 7→ ExX

is measurable.

Proof. As mentioned above, the plan is to prove the statement for special X, and
then to extend it to bounded X via the monotone class theorem.

Take x ∈ R and a special random variable X. Write

ExX = Ex
n∏

m=1
fm(ω(tm)) = E

n∏
m=1

fm(x+Btm).

We show that this expression is continuous in x by induction on n, which implies
measurability. For t > 0, write pt(x, ·) for the density of the N (x, t)-distribution.
For n = 1, we get

(1.7) ExX = Ef1(x+Bt1) =
∫
R
f1(x+ y)pt1(0, y) dy =

∫
R
f1(z)pt1(x, z) dz,

which is continuous in x. For the induction step, recall the statement of Proposi-
tion A.11 and use the independence of Brownian increments to get

ExX = E
n+1∏
m=1

fm(x+Btm)

= E
[
E
[

n∏
m=1

fm(x+Btm) · fn+1(x+Btn+1)
∣∣∣∣∣Bti , 1 ≤ i ≤ n

]]

= E
[

n∏
m=1

fm(x+Btm)

· Efn+1(x+Btn +Btn+1 −Btn)
∣∣∣∣∣Bti , 1 ≤ i ≤ n

]

= E
[

n∏
m=1

fm(x+Btm) · g(x+Btn)
]
,

(1.8)

where
g(u) := Efn+1(u+Btn+1−tn),
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which is continuous by (1.7). By the induction hypothesis, the right side of (1.8)
is continuous in x, which completes the induction step.

Finally, to extend the result to bounded random variables, we apply the mono-
tone class theorem. Therefore, let the π-system P contain all finite-dimensional
sets and set

H := {X bounded : R 3 x 7→ ExX is measurable} .

The vector space properties are obvious. Property (ii) of the monotone class
theorem is also obvious by using the bounded convergence theorem. Property (i)
was shown as a special case above. So, H contains all bounded random variables
fulfilling the desired statement, which completes the proof. �

The final missing piece to state our version of the Markov property is the time-
shift-operator. It shifts the time for a Brownian path from t to t + s for s, t ≥ 0,
and is defined as

θs : Ω→ Ω, ω 7→ (t 7→ ω(t+ s)),

implying θs(ω)(t) = ω(t + s) = Bt+s(ω). Recall that (Bt ◦ θs − Bs)t≥0 is again a
(standard) Brownian motion for s ≥ 0, which is another version of the Markov
property. Our version states, informally said, that if we want to compute the
conditional expectation of a bounded random variable X, time-shifted by s ≥ 0,
while knowing the Brownian path ω up to time s, we can also start a new Brownian
motion at Bs(ω) and compute the ordinary expectation value using the probability
measure PBs(ω). The formal statement of this is given by the next theorem.

Theorem 1.10 (Markov Property). Let X be a bounded random variable. Then
for every x ∈ R and s ≥ 0, it holds

(1.9) Ex [X ◦ θs | Fs] = EBsX Px-a.s.

Remark. (a) The right side of (1.9) means the composition of the function
y 7→ EyX with Bs, i.e.

EBs [X] (ω) :=
∫

Ω
X(ω′)PBs(ω) (dω′).

(b) The right side of (1.9) is F0
s -measurable by Proposition 1.9. Since the left side

is Fs-measurable and F0
s ⊂ Fs, (1.9) is a stronger statement than

(1.10) Ex
[
X ◦ θs

∣∣∣F0
s

]
= EBsX Px-a.s.
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Proof of Theorem 1.10. Let x ∈ R and s ≥ 0. We have to show that the right
side of (1.9) satisfies the defining property of the conditional expectation on the
left, i.e. we need to prove

(1.11) Ex [X ◦ θs, A] = Ex
[
EBsX,A

]
for all bounded random variables X and all A ∈ Fs. Again, we first consider
special X and finite-dimensional sets A ∈ Fs as in (1.3) and (1.4), where

0 < r1 < . . . < rk < s+ h < s+ t1 < . . . < s+ tn.

We choose 0 < h < t1, since we want to prove (1.9) in the end instead of (1.10).
To show (1.11), we first want to prove

(1.12) Ex [X ◦ θs, A] = Ex
[
EBs+h

[
n∏

m=1
fm(ω(tm − h))

]
, A

]
.

For simplicity, let k = n = 1 and calculate

Ex [X ◦ θs, A] = Ex [f1(ω(t1 + s)), ω(r1) ∈ A1]

=
∫
A1
pr1(x, u) · Euf1(ω(t1 + s− r1)) du

=
∫
A1
pr1(x, u)

(∫
R
pt1+s−r1(u, z)f1(z) dz

)
du

(∗)=
∫
A1
pr1(x, u)

∫
R

(∫
R
ps+h−r1(u, v) pt1−h(v, z) dv

)
f1(z) dz du

(∗∗)=
∫
A1
pr1(x, u)

( ∫
R
ps+h−r1(u, v)

( ∫
R
pt1−h(v, z)f1(z) dz︸ ︷︷ ︸

=Evf1(ω(t1−h))

)
dv
)
du

= Ex
[
EBs+h [f1(ω(t1 − h))] , ω(r1) ∈ A1

]
= Ex

[
EBs+h [f1(ω(t1 − h))] , A

]
,

(1.13)

where we used that

pt1+t2(u, z) =
∫
R
pt1(u, v)pt2(v, z) dv

for t1, t2 ≥ 0 and u, z ∈ R at (∗) and Fubini’s theorem at (∗∗). This also holds for
general k, n ∈ N, which can be written in a clearer way as

(1.14) Ex [X ◦ θs, A] = Ex [φ(Bs+h, h), A] ,

where
φ(y, h) := Ey

n∏
m=1

fm(ω(tm − h)), y ∈ R, h > 0.
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Writing φ(y, h) out explicitly in terms of the normal density as we have done
at (1.8) in the proof of Proposition 1.9, we note that φ is jointly continuous in
(y, h) ∈ R× [0, t1).

Next, we generalize (1.12) for all sets A ∈ F0
s+h

2
by applying the π-λ-theorem,

Theorem A.7, to

P :=
{
A ∈ F0

s+h
2

: A finite-dimensional
}

and
L :=

{
A ∈ F0

s+h
2

: (1.12) holds for A
}
.

L is a λ-system, since:

(i) Ω ∈ L, by doing similar calculation steps as in (1.13).

(ii) IfE,F ∈ L and E ⊂ F , then F\E ∈ L follows by noting that 1F\E = 1F − 1E.

(iii) Let (An)n∈N ⊂ L andAn ↑ A. A ∈ L follows by noting that 1A = ∑
n∈N 1An+1\An ,

the boundedness of X and (ii).

Since P ⊂ L by (1.12), the π-λ-theorem yields that (1.12) also holds for each
A ∈ σ(P) = F0

s+h
2
. Note that we had to take s+ h

2 , since the last point in time rk
of a finite-dimensional set has to be strictly smaller than s+ h. Furthermore note
that since Fs ⊂ F0

s+h
2
, (1.12) holds for every A ∈ Fs. Using the joint continuity

of φ, φ(y, 0) = EyX for every y ∈ R and the continuity of Brownian paths, we get
(1.11) by letting h ↓ 0 in (1.14).

The monotone class theorem again extends the result to bounded random vari-
ables X. For this, let P be the π-system containing all finite-dimensional sets and
set

H := {X bounded : (1.11) holds for A ∈ Fs} .

H is obviously a vector space satisfying property (ii) of the monotone class theorem
by the bounded convergence theorem. Property (i) was already shown above.
Hence, the proof is complete. �

1.2.1 Applications

There are some interesting and useful consequences following from the Markov
property.
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Proposition 1.11. (a) Let X be a bounded random variable. Then for every
x ∈ R and s ≥ 0, it holds

(1.15) Ex [X | Fs] = Ex
[
X
∣∣∣F0

s

]
Px-a.s.

(b) If A ∈ F0, then Px (A) = 0 or 1 for every x ∈ R.

Remark. (b) is known as Blumenthal’s 0-1 law. It is important to note that the
decision whether Px (A) is 0 or 1 in general depends on x.

Proof of Proposition 1.11. (a): Let x ∈ R and s ≥ 0. First, we take special
X as in (1.3). We will compute the left side of (1.15) explicitly using the Markov
property, Theorem 1.10, and note that the result is also F0

s -measurable, which
gives (1.15) for special X. For this, write

X(ω) = X1(ω)(X2 ◦ θs)(ω),

where

X1(ω) =
∏

m:tm≤s
fm(ω(tm)) and X2(ω) =

∏
m:tm>s

fm(ω(tm − s)).

Since X1 is F0
s ⊂ Fs-measurable, the Markov property gives

Ex [X | Fs] = X1Ex [X2 ◦ θs | Fs] = X1EBsX2 Px-a.s.

The second factor of the right side is indeed also F0
s -measurable by Proposition 1.9.

We again apply the monotone class theorem to the π-system P containing all
finite-dimensional sets and to

H := {X bounded : (1.15) holds} .

H is a vector space and satisfies property (ii) of the monotone class theorem by us-
ing the dominated convergence theorem for conditional expectations. Property (i)
has been proved above.

(b): Take A ∈ F0 and x ∈ R. Using (a), we get

1A = Ex [1A | F0] = Ex
[
1A

∣∣∣F0
0

]
,

which means that 1A is F0
0 -measurable. Since B0 is constant Px-a.s., F0

0 consists
only of events with Px-probability 0 or 1 implying that each F0

0 -measurable random
variable, and thus 1A, is constant Px-a.s. Note that 1A can only have values 0 or
1. It follows

Px (A) = Ex1A = 0 or 1.
�
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Corollary 1.12. Let τa := inf {t > 0 : Bt > 0} and τb := inf {t > 0 : Bt = 0}.
Then:

(a) P0 (τa = 0) = 1

(b) P0 (τb = 0) = 1

Proof. (a): Note that {τa = 0} ∈ F0 (but 6∈ F0
0 ). Indeed, since τa is a stopping

time by Proposition 1.5, we get

{τa = 0} =
⋂
n∈N

{
τa ≤

1
n

}
∈
⋂
n∈N
F 1
n

= F0.

Therefore, we can use Blumenthal’s 0-1 law, Proposition 1.11 (b), i.e. it suffices
to show that the probability is strictly positive. For this, take t > 0 and note that

P0 (τa ≤ t) ≥ P0 (Bt > 0) = 1
2 .

Since
{τa = 0} =

⋂
n∈N
{τa ≤ tn}

for any decreasing sequence (tn)n∈N with tn n→∞−−−→ 0, we get

P0 (τa = 0) = lim
t↓0

P0 (τa ≤ t) ≥ 1
2 > 0.

(b): Recognize that also the corresponding statement for Bt > 0 instead of
Bt < 0 holds, i.e. P0 (τã = 0) = 1 for τã := inf{t > 0 : Bt < 0}. By path continuity
of Brownian motion, it follows

P0 (τb = 0) ≥ P0 (τa = 0 ∧ τã = 0) = 1.

�

In contrast to Blumenthal’s 0-1-law, another 0-1-law can guarantee the inde-
pendence of x. It is about so-called tail events coming from the so-called tail
σ-algebra

T :=
⋂
t>0
F∗t ,

where F∗t denotes the smallest σ-algebra with respect to which the projection πs,
defined in (1.1), is measurable for all s ≥ t.
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Proposition 1.13. If A ∈ T , then Px (A) = 0 for all x ∈ R or Px (A) = 1 for
all x ∈ R. Furthermore, if X is a T -measurable random variable, then there exists
a constant c ∈ R, independent of x, such that Px (X = c) = 1 for all x ∈ R.

Proof of Proposition 1.13. Take A ∈ T . Recall that

B̃t(ω) :=

tB1/t(ω) = t ω
(

1
t

)
if t > 0,

0 if t = 0.

is a standard Brownian motion (i.e. starting in 0). Since this transformation is
bijective, we get that P0 (A) = 0 or 1 by Blumenthal’s 0-1 law. Let x ∈ R and note
that the mapping ω(·) 7→ ω(·) + x transforms P0 into Px, but lets T unchanged.
Therefore, Px (A) = 0 or 1. Now, we have to show that this probability does
not depend on x. We do this by showing that Px (A) is continuous in x, which
implies the independence, since Px (A) takes only values 0 or 1, and thus must be
identically 0 or identically 1. Take some s > 0. Since A ∈ F∗s , there is some set
D ∈ F such that 1A = 1D ◦ θs. The Markov property gives

Px (A) = Ex1A = Ex [1D ◦ θs] = Ex [Ex [1D ◦ θs | Fs]]

= Ex
[
EBs1D

]
=
∫
R
ps(x, y)Py (D) dy.

The right side above is continuous in x, so Px (A) is also.
Now, let X be a T -measurable random variable. Since all events of the form

{X ≤ y} for y ∈ R have Px-probability 0 for all x ∈ R or Px-probability 1 for all
x ∈ R, there has to be a constant c ∈ R such that for all x ∈ R, Px (X ≤ y) = 0
for y < c and Px (X ≤ y) = 1 for y ≥ c. It follows that X = c Px-a.s. for each
x ∈ R implying that c is independent of x. �

The next proposition is a special case of the well-known Itô formula from
stochastic calculus and will be applied several times in Chapter 2. It is sometimes
also referred to as Dynkin’s lemma.

Proposition 1.14. Let h be a C2-function with compact support in R. Then,
for every x ∈ R

(1.16) Exh(Bt) = h(x) + Ex
∫ t

0

1
2∆h(Bs) ds for all t ≥ 0.

Consequently, the process

Mt := h(Bt)−
∫ t

0

1
2∆h(Bs) ds, t ≥ 0

is a martingale with respect to (Ft)t≥0 under Px for every x ∈ R.
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Proof. The first part of the proof is based on the observation that the density of
the N (x, t)-distribution,

pt(x, y) := 1√
2πt

e−
(x−y)2

2t ,

where t > 0 and x, y ∈ R, satisfies the heat equation

(1.17) ∂

∂t
pt(x, y) = ∆ypt(x, y)

for all t > 0, and x, y ∈ R, which can be seen by a direct calculation. Here, ∆y

denotes the Laplacian with respect to y. We need to pay attention on the fact that
the partial derivatives of pt(x, y) blow up at t = 0 and x = y. But for any ε > 0
all the partial derivatives (both ∂

∂t
and ∆y) are bounded on the region [ε,∞)×R2.

This and the fundamental theorem of calculus give for 0 < ε < t and x ∈ R

Exh(Bt) =
∫
R
h(y)pt(x, y) dy

=
∫
R

∫ t

ε
h(y) ∂

∂s
ps(x, y) ds dy︸ ︷︷ ︸

=:A1

+
∫
R
h(y)pε(x, y) dy︸ ︷︷ ︸

=Exh(Bε)

.(1.18)

In a second step, by (1.17) and Fubini’s theorem, we get for A1

A1 =
∫
R

∫ t

ε

1
2h(y)∆yps(x, y) ds dy

=
∫ t

ε

∫
R

1
2h(y)∆yps(x, y) dy︸ ︷︷ ︸

=:A2

ds.

Now, we can integrate by parts twice for A2 to get the Laplacian from ps(x, y) to
h(y). Note that the boundary terms vanish, since h has compact support. This
gives

A2 = −
∫
R

1
2
∂

∂y
h(y) ∂

∂y
ps(x, y) dy =

∫
R

1
2∆h(y)ps(x, y) dy

implying
A1 =

∫
R

∫ t

ε

1
2∆h(y)ps(x, y) ds dy = Ex

∫ t

ε

1
2∆h(Bs) ds,

where we used Fubini’s theorem again. Finally, (1.18) becomes

Exh(Bt) = Exh(Bε) + Ex
∫ t

ε

1
2∆h(Bs) ds.
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Since h and ∆h are bounded and continuous, the bounded convergence theorem
yields (1.16) for ε→ 0.

For the second part, note that (1.16) can be written as

ExMt = h(x)(1.19)

for all t ≥ 0 and x ∈ R. Let x ∈ R. (Mt)t≥0 is obviously adapted to (Ft)t≥0. Mt

is also integrable with respect to Px for every t ≥ 0 by (1.19). The martingale
property follows from the Markov property. Indeed, let 0 ≤ s < t and calculate

Ex [Mt | Fs] = Ex
[
h(Bt−s) ◦ θs +

∫ s

0

1
2∆h(Bu) du+

∫ t−s

0

1
2∆h(Bu) ◦ θs du

∣∣∣∣Fs]
= EBsh(Bt−s) +

∫ s

0

1
2∆h(Bu) du+ EBs

∫ t−s

0

1
2∆h(Bu) du

= EBsMt−s +
∫ s

0

1
2∆h(Bu) du

(∗)= h(Bs) +
∫ s

0

1
2∆h(Bu) du

= Ms Px-a.s.,

where we used (1.19) at (∗). �

Remark. (a) Note that this proof can be done in a similar way for Brownian
motion and h in n dimensions.
(b) This result can be generalized to bounded functions, since every bounded
function is the limit of a sequence of functions with compact support.

1.3 The strong Markov property

In this section, it is about to prove the strong Markov property. The big difference
to the former Markov property is that it takes stopping times into account instead
of only fixed points in time. Therefore, we first state a definition that allows us to
deal with "stopping time σ-algebras". Afterwards, we will show some basic results
for it required by the proof of the strong Markov property.

Definition 1.15. Let τ be a stopping time. Define

Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0}.
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Proposition 1.16. Let τ be a stopping time. Then:

(a) Fτ is a σ-algebra.

(b) Fτ = {A ∈ F : A ∩ {τ < t} ∈ Ft for all t ≥ 0}

Proof. Let t ≥ 0 always be arbitrary.
(a): We show that Fτ satisfies the properties of a σ-algebra:

(i) ∅ ∩ {τ ≤ t} = ∅ ∈ Ft. So, ∅ ∈ Fτ .

(ii) For A ∈ Fτ ,
Ac ∩ {τ ≤ t} = {τ ≤ t}︸ ︷︷ ︸

∈Ft

\ (A ∩ {τ ≤ t})︸ ︷︷ ︸
∈Ft

.

So, Ac ∈ Fτ .

(iii) Let (An)n∈N be a sequence of sets with An ∈ Fτ for each n ∈ N. Then⋃
n∈N

An

 ∩ {τ ≤ t} =
⋃
n∈N

(An ∩ {τ ≤ t}︸ ︷︷ ︸
∈Ft

) ∈ Ft

implying ⋃n∈NAn ∈ Fτ .
(b): Let F̃τ be the right side of the statement. For the containment ⊆, let

A ∈ Fτ . We get

A ∩ {τ < t} = A ∩
⋃
n∈N

{
τ ≤ t− 1

n

}

=
⋃
n∈N

(
A ∩

{
τ ≤ t− 1

n

})
︸ ︷︷ ︸

∈F
t− 1

n
⊂Ft

∈ Ft

implying A ∈ F̃τ . For the converse containment, take Ã ∈ F̃τ . Here, we get

Ã ∩ {τ ≤ t} = Ã ∩
⋂
n∈N

{
τ < t+ 1

n

}

=
⋂
n∈N

(
Ã ∩

{
τ < t+ 1

n

})
∈
⋂
n∈N
Ft+ 1

n
= Ft.

Hence, Ã ∈ Fτ . �
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Lemma 1.17. Let all τ ’s appearing below be stopping times. Then:

(a) τ is Fτ -measurable.

(b) τ1 ≤ τ2 implies Fτ1 ⊆ Fτ2.

(c) If τn ↓ τ , then Fτ = ⋂
n∈NFτn.

(d) If the process X = (Xt)t≥0 is adapted to (Ft)t≥0 and has right-continuous
paths, then Xτ1{τ<∞} is Fτ -measurable.

Proof. (a): It suffices to show that {τ ≤ s} = {τ ∈ [0, s]} ∈ Fτ for s ≥ 0, since
it holds

{τ ∈ (r, s]} = {τ ≤ s} ∩ {τ > r}︸ ︷︷ ︸
{τ≤r}c

for each r, s ≥ 0 with r < s and since half-open intervals generate B(R). So, let
s, t ≥ 0 and get

{τ ≤ s} ∩ {τ ≤ t} = {τ ≤ s ∧ t}︸ ︷︷ ︸
∈Fs∧t⊂Ft

∈ Ft

implying {τ ≤ s} ∈ Fτ .
(b): Take A ∈ Fτ1 and note that {τ2 ≤ t} = {τ1 ≤ t} ∩ {τ2 ≤ t} since

{τ2 ≤ t} ⊆ {τ1 ≤ t} for each t ≥ 0. It follows for t ≥ 0

A ∩ {τ2 ≤ t} = A ∩ {τ1 ≤ t}︸ ︷︷ ︸
∈Ft

∩{τ2 ≤ t} ∈ Ft.

Hence, A ∈ Fτ2 .
(c): Since τ ≤ τn for every n ∈ N, the containment ⊆ follows by (b). For the

converse containment, take A ∈ ⋂n∈NFτn and t ≥ 0, and see that

A ∩ {τ < t} = A ∩
⋃
n∈N
{τn < t}

=
⋃
n∈N

(A ∩ {τn < t})︸ ︷︷ ︸
∈Ft

∈ Ft

implying A ∈ Fτ .
(d): For a general stopping time τ , note that

Xτ1{τ<∞} = lim
n→∞

Xτ∧n1{τ<∞}.
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Thus, since τ is Fτ -measurable by (a) and Xτ∧n is (also) Fτ∧n ⊆ Fτ -measurable
for each n ∈ N, it suffices to show that Xτ̃ is Fτ̃ -measurable for finite stopping
times τ̃ .

Assume first that the stopping time τ takes only finitely many values t1, t2, . . . .
For a ∈ R and t ≥ 0, we can write

{Xτ ≤ a} ∩ {τ ≤ t} =
⋃
k∈N
tk≤t

{τ = tk, Xtk ≤ a}︸ ︷︷ ︸
∈Ftk⊆Ft

∈ Ft,

since τ is a discrete stopping time and since X is adapted to (Ft)t≥0. This implies
that {Xτ ≤ a} ∈ Fτ , and therefore Xτ is Fτ -measurable (see (a)).

Now, let τ be a finite stopping time, i.e. τ < ∞. We approximate τ by a
sequence of decreasing discrete stopping times (τn)n∈N as follows:

(1.20) τn := k + 1
2n , if k

2n ≤ τ <
k + 1

2n for some k ∈ N0.

Note that τn ↓ τ and furthermore that τn is a stopping time for each n ∈ N.
Indeed, for t ≥ 0, we find some k ∈ N0 such that k

2n ≤ t < k+1
2n . Then

{τn ≤ t} =
{
τ <

k

2n

}
∈ Fk/2n ⊂ Ft.

Since X has right-continuous paths, Xτn
n→∞−−−→ Xτ . For n ≥ m, Xτn is Fτn-

measurable, since τn is discrete, and thus is Fτm-measurable by (b), since τn ≤ τm.
It follows that Xτ is Fτm-measurable for each m ∈ N implying that Xτ is Fτ -
measurable by (c), which completes the proof. �

Now, we are ready to state and prove the strong Markov property.

Theorem 1.18 (Strong Markov property). Let X be a bounded random variable
and τ be a stopping time. Then for every x ∈ R, it holds

(1.21) Ex [X ◦ θτ | Fτ ] = EBτX Px-a.s. on {τ <∞}.

Proof. Let x ∈ D throughout the whole proof. Again, the plan is to prove (1.21)
first for discrete stopping times taking only countable many values. Afterwards,
we approximate arbitrary stopping times by discrete ones from above and take X
of special form such that we can finally use the monotone class theorem.

So, assume first that τ takes only countable many values t1, t2, . . . and∞. It is
important to note that the right side of (1.21) is Fτ -measurable by Proposition 1.9
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and Lemma 1.17 (d). To verify the defining property of the conditional expectation
in (1.21), we need to show that

(1.22) Ex [X ◦ θτ , A] = Ex
[
EBτX,A

]
for A ∈ Fτ with A ⊂ {τ <∞}. For this, write

Ex [X ◦ θτ , A] = Ex
[
(X ◦ θτ ) ·

∑
n∈N

1{τ=tn}︸ ︷︷ ︸
=1

, A
]

=
∑
n∈N

Ex [X ◦ θτ , A ∩ {τ = tn}]

=
∑
n∈N

Ex [X ◦ θtn , A ∩ {τ = tn}]

(∗)=
∑
n∈N

Ex
[
EBtnX,A ∩ {τ = tn}

]
=
∑
n∈N

Ex
[
EBτX,A ∩ {τ = tn}

]
= Ex

[
EBτX,A

]
,

where we used the Markov property, Theorem 1.10, at (∗) recognizing that it
applied, since A ∩ {τ = tn} ∈ Ftn , n ∈ N, by the definition of Fτ .

If τ is an arbitrary stopping time, we approximate it from above by a sequence
of stopping times (τk)k∈N as we did in (1.20). Let τk =∞ for all k ∈ N, if τ =∞.
Let X be special — see (1.3) — and take A ∈ Fτ ⊂ Fτk , k ∈ N, such that
A ⊂ {τ <∞}. The first part above gives for k ∈ N

Ex [X ◦ θτk , A] = Ex
[
EBτkX,A

]
.

Now, we have to pass to the limit as k →∞. For the left side, we write

(X ◦ θτk)(ω) =
n∏

m=1
fm(ω(tm + τk)) k→∞−−−→

n∏
m=1

fm(ω(tm + τ)) = (X ◦ θτ )(ω),

where we used the (right) continuity of Brownian paths. For the right side, recall
from the proof of Proposition 1.9 that the function y 7→ EyX is continuous, which
finally gives (1.22)

Finally, applying the monotone class theorem to the π-system P containing all
finite-dimensional sets and to

H := {X bounded : (1.22) holds for A ∈ Fτ with A ⊂ {τ <∞}}
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gives the general case for bounded random variables X. Obviously, H is a vector
space and by using the bounded convergence theorem, we can see that H satisfies
property (ii) of the monotone class theorem. The special case above shows property
(i). �



Chapter 2

Brownian Motion and the Dirichlet
Problem

This chapter contains the main results of the thesis and treats the connection of
n-dimensional Brownian motion and the Dirichlet problem.

One of the most important and interesting partial differential equations, which
is a topic of every PDE course, is the Laplace equation:

(2.1) ∆u = 0 on Rn,

where ∆ denotes the Laplace operator defined by

∆u =
n∑
i=1

∂2u

∂x2
i

.

A function (on Rn) which satisfies (2.1) is called harmonic.
It describes the equilibrium temperature distribution, in which one is interested

especially for a given body D with fixed temperature on the boundary ∂D. This
means, we want to find functions h on D satisfying ∆h = 0 on D and h = f on
∂D for prescribed boundary values f . This problem is called the Dirichlet problem
on D. The bodies D will be mathematically described throughout this chapter by
domains, i.e. open, connected subsets of Rn.

In the 1940’s and 1950’s, it was recognized by the pioneers Kakutani, Kac
and Doob that there is a deep connection between n-dimensional Brownian mo-
tion, harmonic functions and the Dirichlet problem. As a consequence of this
probabilistic approach, we can approximate solutions to the Dirichlet problem by
Monte-Carlo simulations while requiring less smoothness of the boundary.

In a first step (Section 2.1), we are going to treat some basic results about
harmonic functions, which we will need from time to time later on. In Section 2.2
we state and prove some first results about the connection between Brownian
motion and harmonic functions and prepare for Section 2.3, in which we will care
about the Dirichlet problem on bounded and unbounded domains. Finally, in
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Section 2.4, we see how to solve a boundary value problem on bounded domains
involving the Poisson equation in a probabilistic way.

2.1 Harmonic Functions

We will see that harmonicity can be defined in two ways. Our first goal is to prove
their equivalence. Before we start, let us clarify some notation. The closed ball in
Rn is denoted by B(x, r) and its boundary by ∂B(x, r). The definition is

B(x, r) := {y ∈ Rn : |x− y| ≤ r} , ∂B(x, r) := {y ∈ Rn : |x− y| = r} ,

where |·| is the Euclidean norm on Rn.
The normalized surface measure of total mass 1 on ∂B(x, r) is called σx,r(dy),

the Lebesgue measure on B(x, r) simply dy. The volume of B(0, 1) in n dimensions
is denoted by Vn, so the volume of B(x, r) is Vnrn. The surface of B(x, r) in n
dimensions is nVnrn−1.

Definition 2.1 (Mean value property). A continuous function h on D sat-
isfies the mean value property if

(2.2) h(x) =
∫
∂B(x,r)

h(y) σx,r(dy)

for all x ∈ D and r > 0 such that B(x, r) ⊂ D.

Theorem 2.2. Let h be a function on D. Then the following statements are
equivalent:

(a) h is continuous and satisfies the mean value property.

(b) h ∈ C2(D) and satisfies ∆h = 0 on D.

Proof. Suppose (a) holds. First we want to prove that h ∈ C∞(D). For this, fix
x ∈ D and take a radial C∞-function φ with support in [0, ε] for ε > 0 such that
B(x, ε) ⊂ D. A change to spherical coordinates (Theorem A.3) gives∫

Rn
φ (|y − x|)h(y) dy =

∫
B(0,ε)

φ (|u|)h(x+ u) du

= nVn

∫ ε

0
φ(r)rn−1

(∫
∂B(x,r)

h(y)σx,r(dy)
)
dr

= h(x)nVn
∫ ε

0
φ(r)rn−1 dr,

(2.3)
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where we used (2.2) in the last step. The left side of (2.3) is a C∞-function since
all derivatives can be put under the integral (φ has support in [0, ε]). If the integral
on the right side of (2.3) is nonzero, it follows that h ∈ C∞(D).

For the rest, it suffices to show that for h ∈ C2(D) the mean value property is
equivalent to ∆h = 0 on D. We will prove this analytically using the Gauss-Green
formula (Theorem A.2). Again for x ∈ D and r > 0 such that B(x, r) ⊂ D this
gives ∫

B(x,r)
∆h(y) dy = nVnr

n−1
∫
∂B(x,r)

∇h(y) · ν σx,r(dy)

= nVnr
n−1

∫
∂B(x,r)

∇h(y) · y − x
r

σx,r(dy)

= nVnr
n−1

∫
∂B(0,1)

∇h(x+ ry) · y σ0,1(dy)

= nVnr
n−1 d

dr

∫
∂B(0,1)

h(x+ ry)σ0,1(dy)

= nVnr
n−1 d

dr

∫
∂B(x,r)

h(y)σx,r(dy),

(2.4)

where ν is the outward normal vector on ∂B(x, r). Suppose ∆h = 0 on D.
(2.4) gives that ∫

∂B(x,r)
h(y)σx,r(dy)

is constant in r. Using Lemma A.4, it follows∫
∂B(x,r)

h(y)σx,r(dy) = lim
t→0

∫
∂B(x,t)

h(y)σx,t(dy) = h(x),

which proves the mean value property. Now assume that (2.2) holds for any ball
B(x, r) ⊂ D. By (2.4), it follows

(2.5)
∫
B(x,r)

∆h(y) dy = 0.

It needs to be shown that ∆h ≡ 0 on D. Recall that ∆h is continuous (since h
was proven to be C2(D) in the first step). This means that if ∆h 6≡ 0 on D, there
exist x0 ∈ D and r0 > 0 with B(x0, r0) ⊂ D such that, say w.l.o.g., ∆h > 0 within
B(x0, r0). Using (2.5), we get a contradiction:

0 =
∫
B(x0,r0)

∆h(y) dy > 0

So, ∆h ≡ 0 on D. �
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Definition 2.3 (Harmonic function). A function h on D is called harmonic
if it satisfies the equivalent properties from Theorem 2.2.

Here are some typical examples of harmonic functions in several dimensions, which
we will need later on.

Example 2.4. Let

h(x) =


x if n = 1,
log|x| if n = 2,

1
|x|n−2 if n ≥ 3.

Using criterion (b) in Theorem 2.2, we can show that h is harmonic in R if n = 1
and harmonic in Rn\ {0} if n ≥ 2.

There is an interesting basic result contrasting Example 2.4.

Proposition 2.5. Every nonnegative harmonic function on Rn is constant.

Proof. Choose arbitrary y,z ∈ Rn and take s > 0. Define rs := s + |y − z|
implying B(y, s) ⊂ B(z, rs). Since h is harmonic on Rn, we can set φ = 1[0,rs] in
(2.3) to get

h(z) = 1
Vnrns

∫
B(z,rs)

h(x) dx.

Since h is nonnegative, it follows

h(z) ≥ 1
Vnrns

∫
B(y,s)

h(x) dx = 1
Vnsn

∫
B(y,s)

h(x) dx ·
(
s

rs

)n
= h(y)

(
s

rs

)n
.

Letting s ↑ ∞ gives s
rs
→ 1 implying h(z) ≥ h(y). Since y,z ∈ Rn were chosen

arbitrarily, h is constant. �

The following "maximum principle" of the Laplace equation is a purely analytic
result which will be used several times in this chapter.

Proposition 2.6 (Maximum Principle for Harmonic Functions). Let h be a
harmonic function on D.

(a) If h attains its maximum on D, then it is constant on D.

(b) If D is bounded and h ∈ C(D), then

max
D

h = max
∂D

h.



2.1 Harmonic Functions 37

Remark. Assertion (a) is called the strong maximum principle and (b) is the
maximum principle for harmonic functions. Replace h by −h to get similar asser-
tions for the minimum case.

Proof of Proposition 2.6. First prove (a). Assume h attains its maximum
M := maxD h at x0 ∈ D and consider the set

S := {x ∈ D : h(x) = M} .

We want to prove that S is open, relatively closed (i.e. closed in the relative
topology of D) and nonempty. Since D is connected, this would imply S = D
(and thus h ≡M on D).
Openness: Take x ∈ S. Since h is harmonic on D, we can set φ = 1[0,r] in (2.3) to
get

(2.6) M = h(x) = 1
Vnrn

∫
B(x,r)

h(y) dy if B(x, r) ⊂ D.

It follows that h ≡ M within B(x, r), since M is the maximum and (2.6) would
fail otherwise. So, B(x, r) ⊂ S.
Relative closedness: Take a sequence (xn)n∈N in S with xn

n→∞−−−→ x. We may
assume that x ∈ D, since we want to show closedness in the relative topology of
D. Since h is continuous, it holds h(xn) n→∞−−−→ h(x), implying x ∈ S.
Nonemptyness: Obviously, S is not empty since it was assumed x0 ∈ S.

Now prove (b). If h is constant on D, the assertion follows immediately. So,
assume that h is not constant and, for a contradiction, h attains its maximum
in D. But in this case, (a) implies that h has to be constant. So, h attains its
maximum on the boundary ∂D. �

Corollary 2.7. Suppose D is bounded and h1, h2 ∈ C(D) are two harmonic
functions. If h1 = h2 on ∂D, then h1 = h2 on D.

Proof. Set h := h1− h2, which is again harmonic on D, ∈ C(D) and ≡ 0 on ∂D.
Proposition 2.6 (b), both the maximum and the minimum case, gives h ≡ 0 on D.
The result follows. �

Remark. Looking ahead, note that Proposition 2.6 and its Corollary 2.7 say
that if a solution to the Dirichlet problem exists, then it is unique (provided D is
bounded and f is continuous).
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2.2 Brownian motion comes into play

In this section, we will see how Brownian motion connects with harmonic functions
and afterwards with the Dirichlet problem. But for this, we again will give a
suitable mathematical context: a filtered probability space on which n-dimensional
Brownian motion can live.

The probability space, which is again denoted by (Ω,F ,P) can be constructed
from the one-dimensional case. Let (Ω̃, F̃ , P̃) denote the probability space for the
one-dimensional case from Chapter 1. We define

(Ω,F ,P) := (Ω̃n, F̃⊗n, P̃⊗n).

Hence, the n-dimensional process

B : [0,∞)× Ω→ Rn, (t, ω) 7→ (B1
t (ω1), . . . , Bn

t (ωn)),

where all Bi, i ∈ [n], are independent one-dimensional Brownian motions, will
represent n-dimensional Brownian motion on (Ω,F ,P).

Figure 2.1: Three-dimensional Brownian motion started at the origin of a sphere
and stopped at the boundary

The construction of the well-known family of probability measures (Px)x∈Rn can
be adapted from the one-dimensional case, see (1.2). The filtrations (F0

t )t≥0 and
(Ft)t≥0 are appropriately defined as

F0
t := (F̃0

t )⊗n and Ft := F̃⊗nt , t ≥ 0,
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where (F̃0
t )t≥0 and (F̃t)t≥0 denote the filtrations from the one-dimensional case.

We will need this concrete mathematical context later when we prove Blumen-
thal’s 0-1 law for Brownian motion in n dimensions.

Note that our versions of the (strong) Markov property from Chapter 1, The-
orem 1.10 and 1.18, also hold for Brownian motion in n dimensions. The proofs
can be adapted.

Furthermore, recall that n-dimensional Brownian motion is rotationally invari-
ant. In order to use this property in the sequel, we need the following result.

Lemma 2.8. σx,r is the unique rotationally invariant probability measure on
∂B(x, r).

Proof. Assume µ is a rotationally invariant probability measure on ∂B(x, r) and
let φµ be its characteristic function (i.e. φµ(u) =

∫
∂B(x,r) e

i〈u,v〉µ(dv), u ∈ Rn).
Analogously, let φσ be the characteristic function of σx,r. Also the characteristic
functions are rotationally invariant, since for a rotation matrix R, it holds for φµ
(and φσ respectively)

φµ(Ru) =
∫
∂B(x,r)

ei〈Ru,v〉µ(dv) =
∫
∂B(x,r)

ei〈u,R
T v〉µ(dv)

=
∫
∂B(x,r)

ei〈u,v〉µ(dv) = φµ(u).

Hence, there exist two functions φ∗µ and φ∗σ depending only on |u| such that

φµ(u) = φ∗µ(|u|) and φσ(u) = φ∗σ(|u|).

Thus, by the uniqueness theorem for characteristic functions (Theorem A.10), it
suffices to show that φ∗µ = φ∗σ. We compute

φ∗µ(r) =
∫
∂B(x,r)

φ∗µ(r)σx,r(du) =
∫
∂B(x,r)

φµ(u)σx,r(du)

=
∫
∂B(x,r)

(∫
∂B(x,r)

ei〈u,v〉 µ(dv)
)
σx,r(du)

(∗)=
∫
∂B(x,r)

(∫
∂B(x,r)

ei〈u,v〉 σx,r(du)
)
µ(dv)

=
∫
∂B(x,r)

φσ(v)µ(dv) =
∫
∂B(x,r)

φ∗σ(r)µ(dv) = φ∗σ(r),

using Fubini’s theorem at (∗). �



40 2 Brownian Motion and the Dirichlet Problem

Theorem 2.9. Assume h is a continuous function on Rn such that Ex|h(Bt)| <∞
for all x ∈ Rn and t ≥ 0. Then the following statements are equivalent:

(a) h is harmonic.

(b) h(x) = Exh(Bt) for all x ∈ Rn and t ≥ 0.

Proof. Suppose (a) holds and let t > 0. Since h is harmonic, it satisfies the mean
value property and we can rewrite (2.3) for φ(r) := 1

√
2πt

n
2
e−

r2
2t and D := Rn (i.e.

the restriction on the support is not relevant) to get
1

√
2πt

n
2

∫
Rn
e−
|y−x|2

2t h(y) dy = h(x)nVn
1

√
2πt

n
2

∫ ∞
0

e−
r2
2t rn−1 dr

= h(x) 1
√

2πt
n
2

∫
Rn
e−
|y|2
2t dy︸ ︷︷ ︸

=1

= h(x), x ∈ Rn.

Note that Bt is normally distributed with mean x and covariance matrix tI under
Px. Hence, it holds for x ∈ Rn

h(x) = 1
√

2πt
n
2

∫
Rn
e−
|y−x|2

2t h(y) dy = Exh(Bt).

For t = 0, it holds Bt = x Px-a.s., so it follows Exh(Bt) = Exh(x) = h(x).
For the converse, assume (b) and prove the mean value property for h. Take

x ∈ Rn. Using the Markov property for Brownian motion, Theorem 1.10, we get
that (Exh(Bt))t≥0 is a martingale under Px: For s, t ≥ 0, it holds

Ex [h(Bt+s) | Fs] = EBsh(Bt) = h(Bs) Px-a.s.

For some r > 0, let τ be the first exit time of B(x, r). By the stopping time
theorem, it follows for t ≥ 0

(2.7) h(x) = Exh(Bt) = Ex [Ex [h(Bt) | Ft∧τ ]] = Exh(Bt∧τ ).

Note that the distribution of Bτ is rotationally invariant and so is σx,r on ∂B(x, r)
by Lemma 2.8. To apply the bounded convergence theorem to (2.7), we show that
Exh(Bt∧τ ) is bounded:

Ex|h(Bt∧τ )| ≤ Ex
[
|h(Bt)|1{τ≥t}

]
+ Ex

[
|h(Bτ )|1{τ<t}

]
≤ Ex|h(Bt)|+ Ex|h(Bτ )| <∞,

since Ex|h(Bt)| < ∞ by assumption and Ex|h(Bτ )| =
∫
∂B(x,r) |h(y)|σx,r(dy) <∞,

where we used that h is continuous on Rn. Eventually by the continuity of h,
letting t→∞ in (2.7) gives h(x) = Exh(Bτ ) =

∫
∂B(x,r) h(y)σx,r(dy). �
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The following probabilistic proof demonstrates how to apply Theorem 2.9 to
a basic result in PDE theory. The proof is done via "coupling" two independent
Brownian motions.

Proposition 2.10. Every bounded harmonic function on Rn is constant.

Proof. For x, y ∈ Rn, let (Xt)t≥0 and (Yt)t≥0 be two independent Brownian mo-
tions starting at x and y respectively. We couple (Xt)t≥0 and (Yt)t≥0 in the follow-
ing way. They move independently until the first time τ1 := inf {t ≥ 0 : X1

t = Y 1
t }.

τ1 is finite P-a.s., since (X1
t − Y 1

t )t≥0 is a one-dimensional Brownian motion start-
ing at x− y and being recurrent, i.e. it achieves 0 eventually P-a.s. (this property
will be shown later in Example 2.12). After τ1, the first coordinates of (Xt)t≥0 and
(Yt)t≥0 stay together, while the other coordinates continue moving independently
until τ2 := inf {t > τ1 : X2

t = Y 2
t } > τ1. After τ2, the first and second coordinates

stay together. We repeat this process until time τn := inf {t > τn−1 : Xn
t = Y n

t }.
After τn, all coordinates stay together, i.e. Xt = Yt for all t ≥ τn. If h is a bounded
harmonic function on Rn, Theorem 2.9 implies that

|h(x)− h(y)| = |Eh(Xt)− Eh(Yt)|
≤ E|h(Xt)− h(Yt)|
= E

[
|h(Xt)− h(Yt)|1{t<τn}

]
+ E

[
|h(Xt)− h(Yt)|1{t≥τn}

]
︸ ︷︷ ︸

=0

≤ 2‖h‖∞P (t < τn) .

Letting t→∞ gives h(x) = h(y), since τn is finite P-a.s. �

In the following, if not stated otherwise, f is a nonnegative measurable function
on ∂D. Furthermore, let τS denote the first exit time of Brownian motion from a
Borel set S:

τS := inf {t > 0 : Bt ∈ Sc}
Recall that τS is a stopping time by Proposition 1.5 and 1.7, if S is open or closed.

Here comes the first result involving the (bounded or unbounded) domain D.

Theorem 2.11. The function

h(x) := Ex [f(BτD), τD <∞]

is either harmonic in D or ≡ ∞ on D.

Proof. Note that h is well-defined, since BτD ∈ ∂D by path continuity of Brown-
ian motion and f(BτD) is measurable as a composition of two measurable functions.
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We suppose h is finite and show the mean value property for h. Hence, take
x ∈ D and r > 0 such that B(x, r) ⊂ D. Note that for paths starting at x, and
thus inside B(x, r), τB := τB(x,r) < ∞ by regarding a single coordinate of (Bt)t≥0
which takes on infinitely large values. Again path continuity of (Bt)t≥0 implies
that paths ω beginning inside B(x, r) satisfy τD = τB + τD ◦ θτB . It follows that

τD <∞ if and only if τD ◦ θτB <∞

and

(2.8) BτD = BτD ◦ θτB .

(2.8) explains why we will lose the shifts by τB in the following application of the
strong Markov property, Theorem 1.18. For this application, take

τ = τB and X = f(BτD)1{τD<∞}.

The result is

Ex
[
f(BτD)1{τD<∞}

∣∣∣FτB] = EBτB [f(BτD), τD <∞] = h(BτB) Px-a.s.

for a bounded function f . Since every nonnegative measurable function can be
approximated monotonically by bounded functions, the general nonnegative case
follows by applying the monotone convergence theorem for conditional expecta-
tions. By taking expectations above, it holds

(2.9) h(x) = Exh(BτB).

Since the distribution of BτB is rotationally invariant, it is σx,r by Lemma 2.8.
Thus (2.9) becomes the mean value property (2.2).

We assumed h to be finite. Of course, for a nonnegative measurable function f
there is a possibility that h takes on infinite values. Let us consider the set

H := {x ∈ D : h(x) <∞} .

We will show that H is open and relatively closed implying that h is finite in D
or ≡ ∞ on D.
Openness: Take x ∈ D and r > 0 such that B(x, r) ⊂ D. By the previous steps,
we know that h satisfies the mean value property at x, so we can set φ := 1[0,r] in
(2.3) to get

(2.10) h(x) = 1
Vnrn

∫
B(x,r)

h(z) dz
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and choose y ∈ D with |x− y| < r
2 implying B

(
y, r2

)
⊂ B(x, r). We compute

h(x) = 1
Vnrn

∫
B(x,r)

h(z) dz ≥ 1
Vnrn

∫
B(y, r2)

h(z) dz

= 1
Vn
(
r
2

)n
2n

∫
B(y, r2)

h(z) dz = 2−nh(y),

using the nonnegativity of f and h. Thus, if h(x) <∞, then h <∞ in some open
neighborhood of x.
Relative closedness: Take a sequence (xn)n∈N in H with xn n→∞−−−→ x. Note that we
can assume that x ∈ D, since we want to show closedness in the relative topology
of D. Since D is open, there exists xn0 ∈ H, n0 ∈ N, with |xn0 − x| < ε

2 for some
ε > 0 such that B(xn0 , ε) ⊂ D. It follows that B

(
x, ε2

)
⊂ B(xn0 , ε). We compute

h(x) = 1
Vn
(
ε
2

)n ∫
B(x, ε2)

h(z) dz ≤ 1
Vnεn

2n
∫
B(xn0 ,ε)

h(z) dz = 2nh(xn0) <∞.

Hence, H as a subset of a connected set must be either the whole set or the empty
set. This says that either h is finite on D or ≡ ∞ on D. (In the case that h is
finite we proved that h satisfies the mean value property).

If h is finite, we still need to prove continuity of h in D. But this is immediately,
since (2.10) gives for x, y ∈ D and sufficiently small r > 0

|h(x)− h(y)| =
∣∣∣∣∣ 1
Vnrn

(∫
B(x,r)

h(z) dz −
∫
B(y,r)

h(z) dz
)∣∣∣∣∣

≤ 1
Vnrn

∫
B(x,r)4B(y,r)

h(z) dz,
(2.11)

where 4 denotes the symmetric difference of two sets. Thus, |h(x)− h(y)| can be
made arbitrarily small by reducing the distance of x and y (makingB(x, r)4B(y, r)
arbitrarily small). �

Remark. (a) Until we considered the set H in the proof above, everything holds
for bounded f as well. But for bounded f the set H is obviously not empty
implying that H = D. This means that h is harmonic for bounded f .
(b) Note that we did not assume (un)boundedness of D in the theorem above,
which will be very useful in the sequel.

Example 2.12. In the following, we try to apply the knowledge we got from
Theorem 2.11 to study the exit behavior of Brownian motion and some conse-
quences.
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One-dimensional case: Let (Bt)t≥0 be a one-dimensional Brownian motion and
take 0 < r1 < r2. Define the stopping times

τr1 := inf {t > 0 : Bt = r1} and τr2 := inf {t > 0 : Bt = r2} .

We want to calculate the probabilities Px (τr1 < τr2) and Px (τr2 < τr1) for a Brown-
ian motion starting at x ∈ (r1, r2). By the optional sampling theorem, (Bτr1∧τr2∧t)t≥0
is a martingale implying

x = ExBτr1∧τr2∧t.

Since τr1 ,τr2 are Px-a.s. finite stopping times, letting t→∞ gives

x = ExBτr1∧τr2

= r1 Px (τr1 < τr2)︸ ︷︷ ︸
=1−Px(τr2<τr1)

+ r2 Px (τr2 < τr1)

= r1 + (r2 − r1)Px (τr2 < τr1) .

It follows that

Px (τr2 < τr1) = x− r1

r2 − r1
and Px (τr1 < τr2) = r2 − x

r2 − r1
.

Multi-dimensional case: Now, let (Bt)t≥0 be an n-dimensional Brownian mo-
tion. Take again 0 < r1 < r2 and consider the domain

D = {x ∈ Rn : r1 < |x| < r2}

and boundary values

f(x) =

0 if |x| = r1,
1 if |x| = r2.

By Theorem 2.11, the function

h1(x) = Exf(BτD) = Px (Bt exits D through the outer boundary)

is harmonic in D. The results of the next section will show that h1 satisfies the
boundary values in the sense that

lim
x→z
x∈D

h1(x) = f(z) , z ∈ ∂D.

Now, let h2 be the function

h2(x) =

a log|x|+ b if n = 2,
a

|x|n−2 + b if n ≥ 3.
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By Example 2.4, h2 is harmonic in D and also satisfies the boundary values for
constants a ∈ R\ {0} and b ∈ R which have to be chosen correctly. On the inner
boundary, h2 has to be zero whereas on the outer boundary it has to be one, i.e.
for n = 2

a log r1 + b = 0, a log r2 + b = 1
and for n ≥ 3

a

rn−2
1

+ b = 0, a

rn−2
2

+ b = 1.

This leads for n = 2 to

a = 1
log r2 − log r1

, b = − log r1

log r2 − log r1

and for n ≥ 3 to
a = (r1r2)n−2

rn−2
1 − rn−2

2
, b = rn−2

2

rn−2
2 − rn−2

1
.

Since h1 = h2 on ∂D, we can use Corollary 2.7 to conclude

Px (Bt exits D on the outer boundary) =


log|x|−log r1
log r2−log r1

if n = 2,(
r2
|x|

)n−2 |x|n−2−rn−2
1

rn−2
2 −rn−2

1
if n = 3.

Recall from the one-dimensional case that this probability for n = 1 is given by

x− r1

r2 − r1
for r1 < x < r2.

Figure 2.2: Brownian motion stopped at the boundary of D in two and three
dimensions
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There is an interesting consequence of this example for n ≥ 2 if we let r1 ↓ 0
and r2 ↑ ∞. Define for r > 0

τr := inf {t > 0 : Bt ∈ ∂B(0, r)}

and note that the probability above can also be written as Px (τr2 < τr1). It follows
that for n ≥ 2

lim
r1↓0

Px (τr2 < τr1) = 1 for 0 < |x| < r2.

Let τ0 denote the first hitting time of 0 and take a decreasing sequence (rn1 )n∈N
with 0 < rn1 < r2 for all n ∈ N and rn1

n→∞−−−→ 0. Then, we get an increasing sequence
of sets

({
τr2 < τrn1

})
n∈N

satisfying

{τr2 < τ0} =
⋃
n∈N

{
τr2 < τrn1

}
.

Using the continuity of the probability measure Px, this implies

Px (τr2 < τ0) = lim
r1↓0

Px (τr2 < τr1) = 1 for 0 < |x| < r2.

For letting r2 ↑ ∞, take now an increasing sequence (rn2 )n∈N with rn2 > 0 for
all n ∈ N and rn2

n→∞−−−→ ∞. This time, we get a decreasing sequence of sets({
τrn2 < τ0

})
n∈N

satisfying

{τ0 =∞} ⊇
⋂
n∈N

{
τrn2 < τ0

}
.

As above, this implies Px (τ0 =∞) = 1 for x 6= 0, since

Px (τ0 =∞) ≥ lim
r2↑∞

Px (τr2 < τ0) = 1.

In other words, this means that a Brownian motion starting at a point x 6= 0 never
hits 0 Px-a.s.

The case x = 0 is still missing. First, let us rewrite the relevant event:

{τ0 <∞} = {∃t > 0 : Bt = 0} =
⋃
n∈N

{
∃t > 1

n
: Bt = 0

}

Now regard the event
{
∃t > 1

n
: Bt = 0

}
for arbitrary n ∈ N. The idea is now to

wait until time 1
n
, to start a Brownian motion from B1/n (which is P0-a.s. a positive
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distance away from 0, since P0
(
B1/n = 0

)
= 0) and to use the Markov property

then. Thus, it follows

P0
(
∃t > 1

n
: Bt = 0

)
= P0

(
∃t > 0 : Bt+ 1

n
= 0

)
= E0

[
P0
(
∃t > 0 : Bt+ 1

n
= 0

∣∣∣F1/n

)]
= E0

[
PB1/n (∃t > 0 : Bt = 0)

]
= E0

[
PB1/n (τ0 <∞)︸ ︷︷ ︸

=0

]
= 0.

It follows P0 (τ0 <∞) = 0. This property can be easily generalized to arbitrary
points x ∈ Rn (by taking balls with center x instead of 0) and is expressed by
saying that Brownian motion does not hit points in dimensions ≥ 2.

Above, we let r1 ↓ 0 first, but we can derive another property of Brownian
motion if we only let r2 ↑ ∞. For this, take an increasing sequence (rn2 )n∈N
with rn2

n→∞−−−→∞. Observe that the sequence of sets (An)n∈N, defined by An :={
τrn2 < τr1

}
, is decreasing and it holds{

τr1 =∞, lim sup
t→∞

|Bt| =∞
}

=
⋂
n∈N

{
τr2
n
< τr1

}
.

Take x ∈ Rn with |x| > r1. Since Px (lim supt→∞ |Bt| =∞) = 1, it follows by
Lemma A.9,

Px (τr1 =∞) = lim
r2↑∞

Px (τr2 < τr1).

For n = 2, we compute

lim
r2↑∞

Px (τr2 < τr1) = lim
r2↑∞

log|x| − log r1

log r2 − log r1
= 0,

and if n ≥ 3, it holds

lim
r2↑∞

Px (τr2 < τr1) = lim
r2↑∞

rn−2
2 (|x|n−2 − rn−2

1 )
|x|n−2(rn−2

2 − rn−2
1 )

= lim
r2↑∞

(r2|x|)n−2

(r2|x|)n−2 − (r1|x|)n−2 − lim
r2↑∞

(r1r2)n−2

(r2|x|)n−2 − (r1|x|)n−2

= 1−
(
r1

|x|

)n−2

= |x|
n−2 − rn−2

1

|x|n−2 .

In other words, these results say that Brownian motion is neighborhood recurrent
(i.e. it hits every ball eventually with probability 1) if n ≥ 2, but is neighborhood
transient (i.e. not neighborhood recurrent) for n ≥ 3.
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Remark. Above we dealt with probabilities of hitting times of circles. Another
interesting question is: What is the expected amount of time spent in B(0, r),
r > 0, for a Brownian motion (Bt)t≥0 started at x ∈ B(0, r)? If we recognize that
(Mt := |Bt|2 − nt)t≥0 is a martingale, the answer will follow with a few steps. So,
choose x ∈ B(0, r) and let us show that (Mt)t≥0 is a martingale (with respect to
the natural filtration of Brownian motion (F0

t )t≥0):
Mt is integrable for t ≥ 0 since

Ex|Mt| ≤ Ex|Bt|2 + nt =
n∑
i=1

Ex(Bi
t)2 + nt = 2nt <∞.

The adaptedness is obvious. Note that for each i = 1, . . . , n, ((Bi
t)2 − t)t≥0 is a

martingale under Px by Proposition 1.3 (a). Thus, it follows that for 0 ≤ s ≤ t

Ex
[
Mt

∣∣∣F0
s

]
=

n∑
i=1

Ex
[
(Bi

t)2
∣∣∣F0

s

]
− nt =

n∑
i=1

Ex
[
(Bi

t)2 − t
∣∣∣F0

s

]
=

n∑
i=1

(
(Bi

t)2 − s
)

= |Bs|2 − ns = Ms.

Let now τB := τB(0,r) be the first exit time of the ball B(0, r). Since (Mt)t≥0 is
a martingale and τB a stopping time, (MτB∧t)t≥0 is also a martingale. For t ≥ 0
this gives

ExMτB∧t = ExM0 = |x|2.

Since τB <∞ Px-a.s., it follows by the bounded convergence theorem that

ExMτB = |x|2.

On the other hand, it holds that ExMτB = r2 − nExτB, so the result is

ExτB = r2 − |x|2

n
.
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2.3 Solving the Dirichlet problem

Definition 2.13. Let f : ∂D → R be a function. A function h is called a
solution to the Dirichlet problem on D with boundary values f if it is harmonic
on D and satisfies

lim
x→z
x∈D

h(x) = f(z), z ∈ ∂D.

So far, we found a harmonic function on D, which is the candidate for the unique
solution of the Dirichlet problem on bounded domains. In this case, it remains
to show that this candidate is continuous up to the boundary ∂D. And it turns
out that proving this property has to take the structure of the boundary and the
boundary values f into account.

Recall that (F0
t )t≥0 denotes the natural filtration of Brownian motion whereas

(Ft)t≥0 stands for its right-continuous extension. Note that the event {τD = 0} is
in F0 (but not in F0

0 ). Indeed,

{τD = 0} =
⋂
n∈N

{
τD ≤

1
n

}
∈
⋂
n∈N
F0

1/n = F0.

In order to use Blumenthal’s 0-1 law, we have to deduce a version for n-dimensional
Brownian motion from the one-dimensional statement:

Proposition 2.14. Blumenthal’s 0-1 law, as it was stated in Proposition 1.11
(b), also holds in higher dimensions.

Proof. Recall that

F0 := F̃⊗n0 = σ
({
A1 × . . .× An : Ai ∈ F̃0, i ∈ [n]

})
,

where F̃0 is the σ-algebra at time 0 of the filtration used in the one-dimensional
case. Since

P :=
{
A1 × . . .× An : Ai ∈ F̃0, i ∈ [n]

}
is a π-system that generates F0, it suffices to show that

(a) Lx := {A ∈ F0 : Px (A) = 0 or 1} is a λ-system for every x ∈ Rn,

(b) P ⊂ Lx for every x ∈ Rn
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by using the π-λ-theorem, Theorem A.7, for P and L.
First, we prove (a). Take arbitrary x ∈ Rn and show the defining three prop-

erties of a λ-system (Definition A.6):

1. Ω ∈ Lx, since Px (Ω) = 1.

2. Take A,B ∈ Lx with A ⊂ B. It holds

Px (B\A) = Px (B)− Px (A) = 0 or 1.

So, B\A ∈ Lx.

3. Take (An)n∈N ⊂ Lx with An ↑ A. It holds

Px (A) = lim
n→∞

Px (An) = 0 or 1.

So, A ∈ Lx.

For (b), take A ∈ P . Then, there exist sets A1, . . . , An ∈ F̃0 such that

A = A1 × . . .× An.

Since A1, . . . , An are independent by definition (see beginning of Section 2.2), we
get

Px (A) = P̃x1(A1) · . . . · P̃xn(An) = 0 or 1,

where P̃xi , i ∈ [n], are the corresponding probability measures from the one-
dimensional case. Thus, A ∈ Lx. �

So, by Blumenthal’s 0-1 law, it follows for every x ∈ Rn that Px (τD = 0) = 0
or 1. Obviously, for x ∈ D it holds Px (τD) = 0 and Px (τD) = 1 for x 6∈ D (both
by path continuity of Brownian motion). Thus, the interesting case is x ∈ ∂D. In
general, it depends on the boundary point whether Px (τD = 0) is 0 or 1. This fact
justifies the following definition.

Definition 2.15. A point x ∈ ∂D is called regular if Px (τD = 0) = 1 and
irregular if Px (τD = 0) = 0.

Example 2.16. (a) LetD = {x ∈ Rn : xn > 0}. SinceBn
t is a one-dimensional

Brownian motion, Corollary 1.12 implies that all points x ∈ ∂D are regular.
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(b) For n ≥ 2 and D = {x ∈ Rn : 0 < |x| < 1}, 0 is irregular, since the probabil-
ity that Brownian motion immediately returns to 0 is 0 (Brownian motion
does not hit points for n ≥ 2). For n = 1, 0 is regular by Corollary 1.12
again.

(c) ConsiderD = {x ∈ Rn : |x| < 1} \ {x ∈ Rn : x1 ≥ 0, x2 = . . . = xn = 0}. Re-
call that Brownian motion does not hit points in dimensions ≥ 2. It follows
that 0 is irregular for n ≥ 3 since (B2

t , . . . , B
n
t )t≥0 as an (n− 1)-dimensional

Brownian motion does not hit 0. In the case n = 2, 0 is regular. Indeed,
let σn := inf

{
t > 1

n
: B2

t = 0
}

and τ0 := inf {t > 0 : B2
t = 0}. Note that

limn→∞ σn = τ0 = 0 P0-a.s. by Corollary 1.12. Since (B1
t )t≥0 and (B2

t )t≥0
are two independent Brownian motions, B1

σn is a symmetric random variable
implying

P0
(
B1
σn ≥ 0

)
= P0

(
B1
σn ≤ 0

)
≥ 1

2 .

Recognizing that {τD ≤ σn} ⊇
{
B1
σn ≥ 0

}
, we get

P0 (τD = 0) = lim
n→∞

P0 (τD ≤ σn) ≥ lim inf
n→∞

P0
(
B1
σn ≥ 0

)
≥ 1

2 .

Since {τD = 0} ∈ F0, we can apply Blumenthal’s 0-1 law, which gives

P0 (τD = 0) = 1.

Since the notion of regularity is not very handy at first sight, we introduce another
condition being sufficient for regularity, the truncated cone condition. A cone is a
set of points obtained by rotating the set{

z ∈ Rn : 0 < z1, z
2
2 + · · ·+ z2

n ≤ cz2
1

}
,

where c > 0 can be seen as the "width" of the cone. To get a truncated cone we
just have to add the condition z1 < r for r > 0 denoting the "length" of the cone.
A cone with vertex at z can be obtained by translating a cone with vertex at the
origin by z.

Definition 2.17. A point z ∈ ∂D satisfies the truncated cone condition if
there exists a truncated cone C0 with vertex at z such that C0 ⊆ Dc.

Example 2.18. (a) Let D = {x ∈ Rn : |x| < 1}. Obviously, every z ∈ ∂D
satisfies the truncated cone condition.
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(b) Take D = B(−1, 1) ∪ B(1, 1). Then z = 0 does not satisfy the truncated
cone condition.

-2 -1 1 2

-1.0

-0.5

0.5

1.0

Figure 2.3: Example 2.18 (b) in two dimensions

Lemma 2.19. If z ∈ ∂D satisfies the truncated cone condition, then z is regular.

Proof. Let z ∈ ∂D satisfy the truncated cone condition by a truncated cone C0
and let C denote the corresponding full cone. We have to show that

(2.12) Pz (τD = 0) = 1.

Since {τD = 0} ∈ F0, it suffices to prove that Pz (τD = 0) > 0, since (2.12) will
follow by Blumenthal’s 0-1 law. First, regard Pz (τD ≤ t) for some t > 0. We
compute

(2.13) Pz (τD ≤ t) ≥ Pz (Bt ∈ C0) = Pz (Bt ∈ C)− Pz (Bt ∈ C\C0) .

Note that Pz (Bt ∈ C) is independent of t. To see this, take random variables Zi,
i ∈ [n], which are all N (z, 1)-distributed under Pz. Then for i ∈ [n],

√
tZi is

N (z, t)-distributed under Pz as Bi
t is, as well. It follows

Pz (Bt ∈ C) (∗)= Pz
(

(B2
t )2 + · · ·+ (Bn

t )2

(B1
t )2 ≤ c

)

= Pz
(

(
√
tZ2)2 + · · ·+ (

√
tZn)2

(
√
tZ1)2

≤ c

)

= Pz
(
Z2

2 + · · ·+ Z2
n

Z2
1

≤ c

)
,

which is independent of t. At (∗), we used the rotational invariance of Brow-
nian motion. Furthermore, note that this probability is strictly positive, since
C has strictly positive Lebesgue-measure and Bt is multi-dimensional normally
distributed. Since

Pz (Bt ∈ C\C0) t↓0−→ 0,
we can conclude that Pz (τD = 0) = limt↓0 Pz (τD ≤ t) > 0 by letting t ↓ 0 in
(2.13). �
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Lemma 2.20. For t > 0, the function x 7→ Px (τD ≤ t) is lower semicontinuous
on Rn, i.e.

lim inf
x→z

Px (τD ≤ t) ≥ Pz (τD ≤ t) , z ∈ Rn.

Proof. We try to construct an increasing sequence of continuous functions that
converges pointwise to x 7→ Px (τD ≤ t), because then we can use the fact that an
increasing limit of continuous functions is lower semicontinuous (see Lemma A.5).

Fix 0 < s < t. By the Markov property, we can write

Px (∃u ∈ (s, t] : Bu ∈ Dc) = Ex [Px (∃u ∈ (0, t− s] : Bu+s ∈ Dc | Fs)]
= Ex

[
PBs (∃u ∈ (0, t− s] : Bu ∈ Dc)

]
= Ex

[
PBs (τD ≤ t− s)

]
=
∫
Rn
ps(x, y)Py (τD ≤ t− s) dy,

(2.14)

where ps(x, y) := 1√
2πse

− |x−y|
2

2s denotes the density of Bs, if B0 = x. The right side
of (2.14) is continuous in x, thus the left side is, as well.

It remains to show that Px (τD ≤ t) is the increasing limit of the left side of
(2.14) as s ↓ 0. For this, take a sequence (sn)n∈N such that sn ↓ 0 as n → ∞.
Note that the sequence of sets (An)n∈N, defined by An := {∃u ∈ (sn, t] : Bu ∈ Dc},
is increasing and satisfies

{τD ≤ t} = {∃u ∈ (0, t] : Bu ∈ Dc} =
⋃
n∈N

An.

By the continuity of the measure Px, it follows that

Px (An) ↑ Px (τD ≤ t) as n→∞.

�

Now we can state and prove the main result on attainment of boundary values.

Theorem 2.21. Let f : ∂D → R be bounded. If z ∈ ∂D is regular and f is
continuous at z, then

lim
x→z
x∈D

h(x) = lim
x→z
x∈D

Ex [f(BτD), τD <∞] = f(z).

Proof. Our goal is to show that

lim sup
x→z
x∈D

|h(x)− f(z)| = 0.
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For r > 0, let τr be the hitting time of B(z, r) and x ∈ D ∩B(z, r). It follows

Ex [|f(BτD)− f(z)|, τD <∞]
= Ex [|f(BτD)− f(z)|, τr ≤ τD <∞] + Ex [|f(BτD)− f(z)|, τD ≤ τr]
≤ 2‖f‖∞P

x (τr ≤ τD <∞) + sup
|y−z|≤r
y∈∂D

|f(y)− f(z)|Px (τD ≤ τr) .
(2.15)

Since τr > 0 Px-a.s., there exists a t > 0 such that Px (τr ≥ t) > 0. Indeed, for a
contradiction, assume that Px (τr ≥ t) = 0 for every t > 0. Since

{τr > 0} =
⋃
t∈Q+

{τr ≥ t},

it holds that
Px (τr > 0) = lim

t↓0
Px (τr ≥ t)︸ ︷︷ ︸

=0

= 0,

which yields the contradiction to τr > 0 Px-a.s.
Now, we want to show that

(2.16) lim sup
x→z
x∈D

Px (τD ≤ τr) = 1

implying

lim sup
x→z
x∈D

Px (τr ≤ τD <∞) ≤ lim sup
x→z
x∈D

Px (τr ≤ τD)

= 1− lim sup
x→z
x∈D

Px (τD ≤ τr) = 0.

For the specific t > 0 from above, we compute

Px (τD ≤ τr) = Px(τD ≤ τr, τr ≥ t︸ ︷︷ ︸
⊇{τD≤t}

) + Px (τD ≤ τr, τr < t)︸ ︷︷ ︸
≥0

≥ Px (τD ≤ t) .

By Lemma 2.20 and the regularity of z, it follows

lim sup
x→z
x∈D

Px (τD ≤ τr) ≥ lim inf
x→z
x∈D

Px (τD ≤ τr)

≥ lim inf
x→z
x∈D

Px (τD ≤ t)

≥ Pz (τD ≤ t) = 1,
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which gives (2.16).
Note that, again Lemma 2.20 and the regularity of z give

lim sup
x→z

Px (τD <∞) ≥ lim sup
x→z

Px (τD ≤ s)

≥ lim inf
x→z

Px (τD ≤ s) ≥ Pz (τD ≤ s) = 1
(2.17)

for some s > 0.
Finally, (2.16), (2.17) and passing to the limit in (2.15) give

lim sup
x→z
x∈D

|h(x)− f(z)| = lim sup
x→z
x∈D

|h(x)− f(z)Px (τD <∞)|

≤ lim sup
x→z
x∈D

Ex [|f(BτD)− f(z)|, τD <∞]

≤ sup
|y−z|≤r
y∈∂D

|f(y)− f(z)|.

Letting r ↓ 0 and using the continuity of f at z completes the proof. �

Let us now look at the simplest result about Dirichlet problems for bounded D:

Theorem 2.22. Suppose D is bounded, every point on ∂D is regular and f : ∂D → R
is continuous. Then the unique solution to the Dirichlet problem is given by

h(x) := Exf(BτD), x ∈ D.

Proof. Since D is bounded, it holds τD < ∞ Px-a.s. for every x ∈ D. Since
D is bounded (and hence ∂D is compact) and f is continuous, f is bounded.
Theorem 2.11 and Theorem 2.21 give that h is a solution to the Dirichlet problem.
Since f is continuous, h is continuous on D. Thus, the uniqueness follows from
Corollary 2.7. �

Remark. There is an interesting way to prove the following statement: If h is a
bounded solution to the Dirichlet problem on bounded D with boundary values f ,
then

(2.18) h(x) = Exf(BτD), x ∈ D.

We see this by Proposition 1.14 and the subsequent remark. Indeed, let x ∈ D.
Since

h(BτD∧t)−
∫ τD∧t

0

1
2∆h(Bs) ds, t ≥ 0
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is a martingale with respect to (Ft)t≥0 under Px, we can write

Exh(BτD∧t)− Ex
∫ τD∧t

0

1
2 ∆h(Bs)︸ ︷︷ ︸

=0

ds = Exh(B0) = h(x)

⇐⇒ h(x) = Exh(BτD∧t).

Since h is bounded and continuous, and τD <∞ Px-a.s., letting t ↑ ∞ gives

h(x) = Exh(BτD).

Note that BτD ∈ ∂D by path continuity of Brownian motion, and hence

h(BτD) = f(BτD),

which gives (2.18).

Example 2.23. Let n ≥ 2 and D := {x ∈ Rn : 0 < |x| < 1}. Example 2.16(b)
gives that the boundary point 0 is not regular. To find a solution to the Dirichlet
problem onD with continuous boundary values f , we first want to find a solution to
the Dirichlet problem on D̃ := D∪{0} with continuous boundary values f̃ := f |∂D̃.
By Theorem 2.22, the unique solution on D̃ is

h̃(x) = Exf̃(BτD̃
), x ∈ D̃.

Hence, a good candidate for the solution on D is

h(x) := Exf(BτD), x ∈ D.

But this function can only be continuous at 0 if

f(0) = h̃(0) = E0f̃(BτD̃
) =

∫
∂B(0,1)

f̃(y)σ0,1(dy) =
∫
∂B(0,1)

f(y)σ0,1(dy).

If this is not the case, there is no solution to the Dirichlet problem on D. If it is,
the solution is unique by Corollary 2.7.

Next, we want to find out how to deal with unbounded domains. The function

(2.19) g(x) := Px (τD =∞) , x ∈ D

plays an important role for this.
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Proposition 2.24. For g, defined by (2.19), it holds

(a) g is harmonic in D.

(b) If z ∈ ∂D is regular, then
lim
x→z
x∈D

g(x) = 0.

Proof. Let f ≡ 1 on ∂D. First, we prove (a). It holds

g(x) = 1− Px (τD <∞) = 1− Ex [f(BτD), τD <∞] .

By Theorem 2.11, g is harmonic in D.
Now prove (b). Let z ∈ ∂D be regular. We compute

lim
x→z
x∈D

g(x) = 1− lim
x→z
x∈D

Ex [f(BτD), τD <∞]

= 1− f(z) = 0

using Theorem 2.21. �

As a consequence, if all boundary points are regular, then g is a solution to
the Dirichlet problem with boundary values 0. Using Corollary 2.7, the question
of uniqueness reduces to the question whether g ≡ 0 on D or not. The answer to
this question needs the notion of a recurrent set.

Definition 2.25. A Borel set A ⊂ Rn is called recurrent, if it holds

Px (∀t > 0 ∃s > t : Bs ∈ A) = 1

for every x ∈ Rn. If A is not recurrent, it is called transient.

Example 2.26. Let D := {x ∈ Rn : |x| > 1}. For n = 2, Dc is recurrent. On
the other hand, if n ≥ 3, Dc is transient (see Example 2.12).

Theorem 2.27. Suppose every boundary point is regular. Then g ≡ 0 in D if
and only if Dc is recurrent.

Proof. Assume Dc is recurrent. Then Px (τD <∞) = 1 for every x ∈ Rn, so
g ≡ 0 in D.

Now assume g ≡ 0 in D implying Px (τD <∞) = 1 for x ∈ D — in fact for
x ∈ Rn, on ∂D by the regularity assumption and on D

c by path continuity of
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Brownian motion. To prove recurrence of Dc, fix x ∈ Rn and observe that for D
as a domain (i.e. open and connected), it holds that

Px (∀t > 0 ∃s > t : Bs ∈ Dc) = Px
(
∀t ∈ Q+ ∃s > t : Bs ∈ Dc

)
= Px

( ⋂
t∈Q+

{∃s > t : Bs ∈ Dc}
)

again by path continuity. This implies that we need to show

(2.20) Px (∃s > t : Bs ∈ Dc) = 1

only for a single fixed t ∈ Q+. So, fix t ∈ Q+. The Markov property gives

Px (∃s > t : Bs ∈ Dc | Ft) = PBt(∃s > 0 : Bs ∈ Dc︸ ︷︷ ︸
={τD<∞}

) = 1,

where we used in the last step that Px (τD <∞) = 1 for every x ∈ Rn, which was
proved above. Taking expectations on both sides yields (2.20). �

The next theorem is the main result for unbounded domains.

Theorem 2.28. Suppose all points on ∂D are regular and f is a bounded and
continuous function on ∂D. Then every bounded solution to the Dirichlet problem
on D with boundary values f has the form

(2.21) h(x) := Ex [f(BτD), τD <∞] + cPx (τD =∞)

for some constant c.

Remark. (a) Note that c is independent of x.
(b) We can regard c as the boundary value of h at ∞.
(c) The boundedness assumption on the solution h in the theorem above is nec-
essary. If D = Rn, nonnegativity is enough by Proposition 2.5, but if D 6= Rn, it
is not by the following example: Let

D = {x = (x1, . . . , xn) ∈ Rn : xn > 0}

be the upper half space in Rn and f ≡ 0 on ∂D. Then h(x) = xn is an unbounded,
nonnegative solution to the Dirichlet problem, but is not of the form (2.21).

Proof of Theorem 2.28. First note that every function of the form (2.21) is a
solution to the Dirichlet problem by Theorem 2.11, Theorem 2.21 and Proposi-
tion 2.24.
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Now, assume that h is a bounded solution to the Dirichlet problem. If D = Rn,
then Px (τD <∞) = 0 and Px (τD =∞) = 1 for every x ∈ Rn. So, (2.21) follows
by Proposition 2.10. Hence, we assume that D 6= Rn. Let us define h = f on ∂D,
such that h becomes continuous on D. We now have to find a constant c such that
(2.21) holds.

We will construct an increasing sequence of bounded, "good" domains Dn that
approximate D from the inside and then use some previous results. To describe
the sequence, we will need the notion for the distance of a point x ∈ Rn to a set
A ⊂ Rn once more, which was originally defined by

dist(x,A) := inf {|x− y| : y ∈ A}.

Note that dist(x,A) is continuous in x. Now, for n ∈ N, define

Dn :=
{
x ∈ D : |x| < n and dist(x,Dc) > 1

n

}
,

which has the following properties:

(a) Dn is open (but not necessarily connected):
Take x ∈ Dn and define δ := min

{
n− |x|, dist(x,Dc)− 1

n

}
> 0. Now, note

that for every y ∈ B(x, δ2), it holds y ∈ Dn.

(b) Dn is bounded:
Note that Dn ⊂ B(0, n).

(c) All points on ∂Dn satisfy the cone condition, and therefore are regular by
Lemma 2.19:
Take x ∈ ∂Dn. It holds |x| = n or dist(x,Dc) = 1

n
. Since Dc

n contains all
y with y ≥ n, the cone condition certainly holds in the first case. In the
second case, note that there exists a y ∈ Dc such that |x− y| = 1

n
, since Dc

is closed. Take a z ∈ B(y, 1
n
) (i.e. |z − y| ≤ 1

n
) implying dist(z,Dc) ≤ 1

n

which implies z ∈ Dc
n. It follows that the open ball

{
z ∈ Rn : |z − y| < 1

n

}
touches x and is fully contained in Dc

n, so the cone condition is satisfied.

Now, it holds that

(2.22) h(x) = Exh(BτDn
), x ∈ Dn.

We can see this by noting that the left side is harmonic on Dn by assumption and
the right side is harmonic by Theorem 2.11. Both sides have boundary values h—
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the right side by Theorem 2.21. Since Dn is bounded, we can apply Corollary 2.7
to every connected component of it to get (2.22). Note that

(2.23) Exh(BτDn+1
) = h(x) = Exh(BτDn

), x ∈ Dn,

since Dn ⊂ Dn+1. The strong Markov property and (2.23) give

Ex
[
h(BτDn+1

)
∣∣∣FτDn ] = EBτDnh(BτDn+1

)
= EBτDnh(BτDn

) = h(BτDn
), x ∈ Dn.

This means that, for k ∈ N, Mk := (h(BτDn
))n≥k is a bounded martingale with

respect to Px, if x ∈ Dk. For x ∈ D, choose k ∈ N large enough such that x ∈ Dk

and use the convergence theorem for discrete time martingales, Theorem A.12, to
see that

Z = lim
n→∞

h(BτDn
)

exists Px-a.s. and is in L1 with respect to Px. Hence, passing to the limit in (2.22)
leads to

h(x) = ExZ = Ex [Z, τD <∞] + Ex [Z, τD =∞] , x ∈ D.

Let us find out how Z behaves on {τD <∞}. For this, first note that τDn ↓ τD.
Indeed, define σ := limn→∞ τDn . Since τDn ≤ τD for every n ∈ N, it holds that
σ ≤ τD. Now, show that Bσ ∈ Dc implying τD ≤ σ which yields σ = τD. It holds,
for k ≤ m,

BτDm
∈ Dc

m ⊆ Dc
k.

It follows by path continuity,

Bσ = lim
n→∞

BτDn
∈
⋂
n∈N

Dc
n

(∗)= Dc,

where we used the closedness of Dc at (∗) for the equality. It follows that

h(BτDn
) n→∞−−−→ h(BτD) = f(BτD) Px-a.s. on {τD <∞}

for every x ∈ D by the continuity of h on D. This gives

h(x) = Ex [f(BτD), τD <∞] + Ex [Z, τD =∞] , x ∈ D.

To make the proof complete, we have to show that there exists a constant c,
independent of x, such that

Z = c Px-a.s. on {τD =∞}
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for every x ∈ D. For this, we may assume thatDc is transient, since Px (τD =∞) = 0
for all x ∈ D if Dc is recurrent and the result follows immediately in this case.
First of all, we need to prove that

(2.24) L := lim
t→∞

h(Bt) exists Px-a.s. for every x ∈ D on {τD =∞}.

In doing so, it suffices to show that (h(BτD∧t))t≥0 is a bounded martingale, because
(2.24) follows by the convergence theorem for continuous time martingales, Theo-
rem A.13. The boundedness is clear, since h was assumed to be bounded. To check
the martingale property, let hn ∈ C2 be a function with compact support ⊂ D
such that hn = h on Dn. Note that hn is harmonic in Dn, since h was assumed to
be harmonic in D. Take x ∈ Dn and use Proposition 1.14 to see that

hn(Bt)−
∫ t

0

1
2∆hn(Bs) ds, t ≥ 0

is a martingale with respect to Px. By the stopping time theorem,

hn(BτDn∧t)−
∫ τDn∧t

0

1
2 ∆hn(Bs)︸ ︷︷ ︸

=0

ds = hn(BτDn∧t), t ≥ 0

is also a martingale with respect to Px. Since hn = h on Dn, it follows that
(h(BτDn∧t))t≥0 is a martingale with respect to Px. So, letting n → ∞ yields that
(h(BτD∧t))t≥0 is a martingale with respect to Px for every x ∈ D.

For completeness, (2.24) holds without restriction to {τD =∞}. To see this,
first observe that

(2.25) Bt ∈ D eventually Px-a.s. for every x ∈ D.

This is by regarding the set

A := {∃(tn)n∈N with tn ↑ ∞ : Btn ∈ Dc} .

Recall that the tail-σ-algebra was defined by T := ⋂
t>0F∗t , where F∗t is the small-

est σ-algebra with respect to which the projection ω 7→ ω(s) = Bs(ω) is measurable
for each s ≥ t. Note that A ∈ T is a tail event and by Proposition 1.13, this means
that Px (A) = 0 for all x ∈ Rn or Px (A) = 1 for all x ∈ Rn. Since Dc was assumed
to be transient, Px (A) < 1 implying Px (A) = 0 for all x ∈ Rn, (2.25) follows.
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Now, fix x ∈ D and compute

Px (∀s > t : Bs ∈ D) = Ex [Px (∀s > t : Bs ∈ D) | Ft]
= Ex

[
PBt (∀s > 0 : Bs ∈ D)

]
= Ex

[
PBt (τD =∞)

]
≤ Ex

[
PBt (L exists)

]
= Ex [Px (L exists | Ft)]
= Px (L exists) ,

(2.26)

where we applied the Markov property two times. The left side of (2.26) tends to
1 as t→∞ by (2.25) implying that L exists Px-a.s.

By noting that L is a tail variable (i.e. L is T -measurable), Proposition 1.13
implies that there exists a constant c, independent of x, such that Px (L = c) = 1.
Therefore, Z = L = c on {τD =∞}, which completes the proof. �

2.4 The Poisson equation

Slightly different to the Dirichlet problem is the problem involving the Poisson
equation:

(2.27) 1
2∆h = −f and lim

x→z
x∈D

h(x) = 0 for z ∈ ∂D.

Solutions to (2.27) can be represented by the probabilistic form

(2.28) h(x) = Ex
∫ τD

0
f(Bs) ds, x ∈ D.

The next theorem, providing the main result for the Poisson equation on bounded
domains, makes this statement more rigorous.

Theorem 2.29. Let D be bounded and all points on ∂D be regular. Furthermore,
let h be a C2-function on Rn and f be a continuous function on Rn. Then (2.27)
holds if and only if (2.28) does.

Proof. First, suppose that (2.27) holds. Since h does not need to have compact
support, we take another C2-function h̃ with compact support that agrees with h
on D. Let x ∈ D. We can apply Proposition 1.14 to see that

h̃(Bt)−
∫ t

0

1
2∆h̃(Bs) ds, t ≥ 0
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is a martingale with respect to Px. By the stopping time theorem,

h̃(BτD∧t)−
∫ τD∧t

0

1
2∆h̃(Bs) ds, t ≥ 0

is also a martingale with respect to Px. Since h̃ = h on D, we can replace h̃ by h
to get that

h(BτD∧t)−
∫ τD∧t

0

1
2∆h(Bs) ds, t ≥ 0

is also a martingale with respect to Px. Here, we had to pay attention to the case
τD = 0. We only could replace h̃ by h, if B0 = D, i.e. x ∈ D. Taking this into
account, let t ≥ 0 and use (2.27) to get

Ex
[
h(BτD∧t)−

∫ τD∧t

0

1
2∆h(Bs) ds

]
= Exh(BτD∧t) + Ex

∫ τD∧t

0
f(Bs) ds.

On the other hand, the martingale property yields

Ex
[
h(BτD∧t)−

∫ τD∧t

0

1
2∆h(Bs) ds

]
= Exh(B0) = h(x).

It follows
h(x) = Exh(BτD∧t) + Ex

∫ τD∧t

0
f(Bs) ds.

Note that τD is finite Px-a.s., since D is bounded. Furthermore, note that h|D and
f |D are continuous and bounded, and h ≡ 0 on ∂D by assumption. Thus, we can
apply the bounded convergence theorem for letting t→∞, which gives (2.28).

Now, assume (2.28). The plan is to split the right side of (2.28) into two sum-
mands using an exit time from a ball, then to rewrite the one summand introducing
f(x) and to expand the other summand into a Taylor series on the ball to bring
the Laplace operator into play. So, take x ∈ D and r > 0 such that B(x, r) ⊂ D.
Split (2.28) into two summands and apply the strong Markov property to get

h(x) = Ex
∫ τB(x,r)

0
f(Bs) ds+ Ex

∫ τD

τB(x,r)

f(Bs) ds

= Ex
∫ τB(x,r)

0
f(Bs) ds+ Ex

[
Ex
[∫ τD

τB(x,r)

f(Bs) ds
∣∣∣∣∣FτB(x,r)

]]

= Ex
∫ τB(x,r)

0
f(Bs) ds+ Ex

[
EBτB(x,r)

∫ τD

0
f(Bs) ds

]
= Ex

∫ τB(x,r)

0
f(Bs) ds︸ ︷︷ ︸

:=P1

+Exh(BτB(x,r))︸ ︷︷ ︸
:=P2

.

(2.29)
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We first care about P1, which can, in a first step, be rewritten as

P1 = Ex
[∫ τB(x,r)

0
f(Bs)− f(x) ds

]
+ f(x)ExτB(x,r).

We want to prove that f(Bs) − f(x) ∈ o(1) for s ∈
[
0, τB(x,r)

]
letting r ↓ 0, i.e.

f(Bs)−f(x) r→0−−→ 0 for s ∈
[
0, τB(x,r)

]
. For this, take a decreasing sequence (rn)n∈N

with rn ↓ 0 as n → ∞ and let ε > 0. Since f is continuous, there exists a δ > 0
such that |f(y)− f(x)| ≤ ε for each y ∈ Rn with |y − x| ≤ δ. Choose N ∈ N,
such that rN ≤ δ implying Bs ∈ B(x, rN) ⊆ B(x, δ) (i.e. |Bs − x| ≤ δ) for every
s ∈

[
0, τB(x,rN )

]
. Since rn is decreasing, it follows

|f(Bs)− f(x)| ≤ ε for all s ∈
[
0, τB(x,rn)

]
and all n ≥ N.

This gives
P1 =

[
f(x) + o(1)

]
ExτB(x,r).

Now, P2. Expanding P2 into a Taylor series on B(x, r) at x up to second order
gives

P2 = h(x) + Ex
[
n∑
i=1

∂h

∂xi
(x)

(
Bi
τB(x,r)

− xi
)]

︸ ︷︷ ︸
:=E

+ Ex
1

2

n∑
i,j=1

∂2h

∂xi∂xj
(x)

(
Bi
τB(x,r)

− xi
) (
Bj
τB(x,r)

− xj
)

︸ ︷︷ ︸
:=F

+o(r2).

The term E is zero, since (Bi
t)t≥0 is a martingale (i.e. ExBi

τB(x,r)
= ExBi

0 = xi).
For F , it holds

F = 1
2

Ex
[
n∑
i=1

∂2h

∂x2
i

(x)
(
Bi
τB(x,r)

− xi
)2
]

︸ ︷︷ ︸
:=F1

+Ex

 n∑
i,j=1
i 6=j

∂2h

∂xi∂xj
(x)

(
Bi
τB(x,r)

− xi
) (
Bj
τB(x,r)

− xj
)

︸ ︷︷ ︸
:=F2

.

Since ((Bi
t)

2 − t)t≥0 is a martingale by Proposition 1.3 (a), we can rewrite F1 as

F1 =
n∑
i=1

∂2h

∂x2
i

(x)Ex
[(
Bi
τB(x,r)

)2
− τB(x,r) + τB(x,r) − 2Bi

τB(x,r)
xi + x2

i

]

=
n∑
i=1

∂2h

∂x2
i

(x)
(
x2
i + ExτB(x,r) − 2x2

i + x2
i

)
= ∆h(x)ExτB(x,r).
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Also recall that (Bi
tB

j
t )t≥0 is a martingale for i 6= j by Proposition 1.3 (b). Thus,

for F2 it follows

F2 =
n∑

i,j=1
i 6=j

∂2h

∂xi∂xj
(x)Ex

[
Bi
τB(x,r)

Bj
τB(x,r)

−Bi
τB(x,r)

xj − xiBj
τB(x,r)

+ xixj
]

=
n∑

i,j=1
i 6=j

∂2h

∂xi∂xj
(x) (xixj − xixj − xixj + xixj) = 0.

Summarizing the previous steps gives

P2 = h(x) + 1
2F1 = h(x) + 1

2∆h(x)ExτB(x,r),

which is, by regarding (2.29), implying the following equalities:

1
2∆h(x)ExτB(x,r) = −

[
f(x) + o(1)

]
ExτB(x,r)

⇐⇒ 1
2∆h(x) = −

[
f(x) + o(1)

]
Since ExτB(x,r) = r2

n
> 0 by the remark after Example 2.12, 1

2∆h(x) = −f(x)
follows by letting r ↓ 0.

It remains to show that limx→z
x∈D

h(x) = 0 for each z ∈ ∂D. So, take z ∈ ∂D.
Since f is continuous on Rn, it is bounded on D. This means, it suffices to show
that

(2.30) lim
x→z
x∈D

ExτD = 0.

In a first step, we compute for t > 0 by using the Cauchy-Schwarz inequality

ExτD = Ex [τD, τD ≤ t] + Ex [τD, τD > t]

≤ tPx (τD ≤ t) + Ex
[
τ 2
D

]1/2
Px (τD > t)1/2 .

(2.31)

Note that, since D is bounded, ExτD <∞, and hence Exτ 2
D is uniformly bounded

for x → z, x ∈ D by Proposition 2.30, which is proved afterwards. Indeed, find
r > 0 with D ⊂ B(0, r) and compute

Exτ 2
D ≤


√
ExB4

τD
+ x2

3−
√

6

2

≤
(
r2 + x2

3−
√

6

)2

.
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By Lemma 2.20, we see that

lim inf
x→z
x∈D

Px (τD ≤ t) ≥ Pz (τD ≤ t) = 1,

where we used the regularity of z in the last step. It follows that

lim
x→z
x∈D

Px (τD ≤ t) = 1 and lim
x→z
x∈D

Px (τD > t) = 0.

Thus, taking the limit x→ z, x ∈ D in (2.31) yields to

lim
x→z
x∈D

ExτD ≤ t.

Since t > 0 was arbitrary, we get (2.30), so the proof is complete. �

Proposition 2.30. Let x ∈ D and τ be a stopping time with Exτ <∞. Then

Exτ 2 ≤


√
ExB4

τ + x2

3−
√

6

2

.

Proof. Recall from Proposition 1.3 (c) that (B4
t − 6tB2

t + 3t2)t≥0 is a martingale
under Px. Let t ≥ 0 and see that by the stopping time theorem

ExB4
τ∧t − 6Ex

[
(τ ∧ t)B2

τ∧t

]
+ 3Ex

[
(τ ∧ t)2

]
= x4.

Rearranging and applying the Cauchy-Schwarz inequality gives

ExB4
τ∧t + 3Ex

[
(τ ∧ t)2

]
≤ 6

(
Ex
[
(τ ∧ t)2

]
ExB4

τ∧t

)1/2
+ x4.

For u :=
√
ExB4

τ∧t and v :=
√
Ex [(τ ∧ t)2], this is

u2 − 6uv + 3v2 ≤ x4

implying

(3v − u)2 ≤ x4 + 6v2

=⇒ 3v − u ≤
√
x4 + 6v2 ≤ x2 +

√
6v

⇐⇒ v ≤ u+ x2

3−
√

6

⇐⇒ v2 ≤
(
u+ x2

3−
√

6

)2

.(2.32)
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Since (Bτ∧t)t≥0 is a martingale, we use the Jensen inequality to get

ExB4
τ∧t = Ex

[
Ex [Bτ | Fτ∧t]4

]
≤ ExB4

τ .

We conclude from this and (2.32) that

Ex
[
(τ ∧ t)2

]
≤


√
ExB4

τ + x2

3−
√

6

2

.

Letting t ↑ ∞ completes the proof, since Exτ <∞. �





Appendix

A.1 Notation

Here are some helpful notations being used throughout the text:

(a) Sets of numbers:

(i) N = {1, 2, . . . }, N0 = {0} ∪ N
(ii) Q =̂ rational numbers
(iii) R =̂ real numbers, Rn = R× · · · × R︸ ︷︷ ︸

n times

(iv) [n] := {1, . . . , n} for n ∈ N

(b) a ∧ b := min{a, b}

(c) For an event A ∈ F , the indicator function of A is denoted by 1A.

(d) EX denotes the expectation value of a random variable X.

(e) an ↑↓ a means that the sequence (an)n∈N is increasingly, respectively decreas-
ingly, converging to a as n→∞.

(f) A function f is said to be Ck if f is k times continuously differentiable on
its domain.

A.2 Analysis

In the following, letD ⊂ Rn be bounded and open. ∂D is assumed to be sufficiently
regular with surface measure dS and outward normal vector ν.

Notation. For a (twice) differentiable function u on D and i, j ∈ [n], define

uxi := ∂u

∂xi
, uxixj := ∂2u

∂xi∂xj
.



70 Appendix

Theorem A.1 (Gauss-Green Theorem). Let u ∈ C1(D). Then∫
D
uxi dx =

∫
∂D
uνi dS, i ∈ [n].

Theorem A.2 (Green’s Formula). Let u ∈ C1(D). Then∫
D

∆u dx =
∫
∂D
∇u · ν dS.

Proof. For i ∈ [n] apply Theorem A.1 to uxi to get∫
D
uxixi dx =

∫
∂D
uxiν

i dS.

Now sum for i ∈ [n] to get the result. �

Theorem A.3 (Spherical coordinates). Let u ∈ C(D) be an integrable function.
For all x ∈ D and r > 0 such that B(x, r) ⊂ D, it holds∫

B(x,r)
u(y) dy =

∫ r

0

(∫
∂B(x,s)

u(y) dS
)
ds.

Lemma A.4. Let u ∈ C(D) and x ∈ D. Then it holds∫
∂B(x,r)

u(y)σx,r(dy) r→0−−→ u(x).

Proof. Let ε > 0. Since u is continuous, there exists an r > 0 such that

|y − x| ≤ r ⇒ |u(y)− u(x)| ≤ ε.

Thus the following calculation shows the result:∣∣∣∣∣
∫
∂B(x,r)

u(y)σx,r(dy)− u(x)
∣∣∣∣∣ =

∣∣∣∣∣
∫
∂B(x,r)

u(y)σx,r(dy)−
∫
∂B(x,r)

u(x)σx,r(dy)
∣∣∣∣∣

≤
∫
∂B(x,r)

|u(y)− u(x)|σx,r(dy)

≤ ε

�

Lemma A.5. Let (fn)n∈N be an increasing sequence of continuous functions on
Rn such that fn n→∞−−−→ f pointwise. Then f is lower semicontinuous on Rn, i.e.

lim inf
x→z

f(x) ≥ f(z)

for all z ∈ Rn.
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Proof. Since (fn)n∈N is increasing, it holds that

f(x) ≥ fm(x)

for every m ∈ N and every x ∈ Rn. Fix z ∈ Rn and m ∈ N. It follows

lim inf
x→z

f(x) ≥ lim inf
x→z

fm(x) = fm(z).

Letting m→∞ gives
lim inf
x→z

f(x) ≥ f(z).

�

A.3 Measure theory

Definition A.6. Let (Ω,F) be a measurable space.

(a) A set of events P ⊂ F is called a π-system, if

A,B ∈ P implies A ∩B ∈ P .

(b) A set of events L ⊂ F is said to be a λ-system, if

(i) Ω ∈ L,
(ii) A,B ∈ L and A ⊂ B implies B\A ∈ L,
(iii) (An)n∈N ⊂ L and An ↑ A implies A ∈ L.

Theorem A.7 (π-λ-theorem). Let P be a π-system and L be a λ-system with
P ⊂ L. Then σ(P) ⊂ L. [4, Theorem A.1.4 (p.402)]

Theorem A.8 (Monotone class theorem). Let P be a π-system with Ω ∈ P and
let H be a vector space of random variables satisfying the following properties:

(i) A ∈ P implies 1A ∈ H.

(ii) (Xn)n∈N ⊂ H, X bounded and Xn ↑ X implies X ∈ H.

Then H contains all bounded σ(P)-measurable random variables.
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Proof. Define
L := {A ∈ F : 1A ∈ H} .

We show that L is a λ-system by proving the three defining properties from above:

1. Ω ∈ L, since Ω ∈ P by assumption and (i).

2. Take A,B ∈ L with B ⊂ A. It holds

1B\A = 1B − 1A ∈ H,

since H is a vector space. So, B\A ∈ L.

3. Take (An)n∈N ⊂ L with An ↑ A. It holds

1A = lim
n→∞

1An ∈ H

by (ii). So, A ∈ L.

We apply the π-λ-theorem, Theorem A.7, to P and L to get

σ(P) ⊂ L

expressing that 1A ∈ H for all A ∈ σ(P). Since H is a vector space of random
variables, H also contains all simple σ(P)-measurable random variables. Finally,
by (ii) we get that H contains all bounded σ(P)-measurable random variables. �

A.4 Probability theory

Lemma A.9. Let A and B be two events on a probability space (Ω,F ,P) such
that P (B) = 1. Then it holds

P (A) = P (A ∩B) .

Proof. Since
P (A\B) = P (A ∪B)︸ ︷︷ ︸

≥P(B)=1

−P (B) = 1− 1 = 0,

we compute
P (A) = P (A\B) + P (A ∩B) = P (A ∩B) .

�
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Theorem A.10 (Uniqueness Theorem for Characteristic Functions). If two ran-
dom vectors have the same characteristic function, then they have the same distri-
bution. [4, Theorem 3.9.4 (p.176)]

Proposition A.11. Let X and Y be two random variables on (Ω,F ,P). Sup-
pose that f is a bounded measurable function on R2 and G is a σ-algebra. If X is
G-measurable and Y is independent of G, then

E [f(X, Y ) | G] = g(X) P-a.s.,

where g(x) := Ef(x, Y ).

Proof. First, since X is G-measurable and g is measurable, g(X) is G-measurable.
It remains to show that

E [f(X, Y ), A] = E [g(X), A]

for each A ∈ G. So, take A ∈ G and note that (X,1A) is independent of Y . Let µ
be the distribution of (X,1A) and ν be the distribution of Y . We get

E [f(X, Y ), A] =
∫
R

∫
R2
f(x, y) · a dµ(x, a) dν(y)

(∗)=
∫
R2

∫
R
f(x, y) dν(y)︸ ︷︷ ︸

=g(x)

dµ(x, a)

= E [g(X), A] ,

where we used Fubini’s theorem at (∗). �

Theorem A.12 (Convergence theorem for discrete time martingales). If (Mn)n∈N
is a martingale that satisfies supn∈N E|Mn| < ∞, then limn→∞Mn exists and is
P-a.s. finite. Furthermore, if the martingale is uniformly integrable, then the
convergence also occurs in L1. [4, Theorem 5.2.8 (p.236)]

Theorem A.13 (Convergence theorem for continuous time martingales). If
(Mt)t≥0 is a right-continuous martingale that satisfies supt≥0 E|Mt| < ∞, then
limt→∞Mt exists and is P-a.s. finite. Furthermore, if the martingale is uniformly
integrable, then the convergence also occurs in L1. [1, Theorem 1.92 (p.39)]
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