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Uncertainty Quantification
Physical models are subject to uncertainties of different kinds/sources1:

• Model error

• Measurement noise

• Discretization error

• Parameter uncertainty

• Uncertainty in the system of reasoning

1[Oden, 2017]
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Parameter inference
Task: Find the “best“ model parameters θ that explain measured data d .

→ Inverse problem: Find θ ? such that

d = G (θ ?) or θ
? = arg min

θ

‖d−G (θ )‖2.

→ ill-posed (and no uncertainties)

→ Inference in a probabilistic framework2: Bayesian inversion

2[Tarantola, 2005, Kaipio and Somersalo, 2006]
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Bayesian inversion
Idea: Treat data and parameters as random variables.

Assume noise in measurements: η ∼N (0,Γ)

d = G (θ ) + η (1)

Task: Find posterior distribution ρ(θ |d) ∝ ρ(d |θ )ρ(θ ).

Analytical expression for the posterior are prohibitive.→ Create samples

If one forward solve has high computational cost and number of dimensions is
non-trivial, then sampling is very expensive.→ Surrogate models, dimension
reduction
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Dimension reduction with active subspaces
Approximate a high-dimensional function f : Rn→ R with a lower-dimensional
function g : Rk → R (k < n) by concentrating on “important directions“ in the domain.

Interpretation in Bayesian inversion:
Infer only those parameters (more accurate: directions in the parameter space) that
are informed by data.
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Fig.: Data misfit of an 8D parameter space plotted on the most important axes [Teixeira Parente et al., 2018].
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Future investigations
• Avoiding MCMC with transport maps

• Sparse grids in the parameter space

• Reduced basis approach for Bayesian inversion
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Potential topics for (Master) theses
• Reduced basis approach for Bayesian inversion

Shift expensive computations to a offline-phase and use results to accelerate
online computations.

• Consistent Bayesian formulation of stochastic inverse problems3

Combine a measure-theoretic approach to stochastic inverse problems with the
conventional Bayesian formulation. Use new ideas to lower the influence of the
prior on the posterior.

3[Butler et al., 2017]
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